Автомобильный - Mirtaxibel

Характеристика светодиодных ламп для авто ближнего и дальнего света H4 Диодные автолампы h4

Зажигание мотоцикла, какие системы бывают — всё о них Что такое магнето?

Смазка для подшипников какая лучше?

Группы базовых масел American Petroleum Institute Конкурентные преимущества Liqui Moly в секторе специальных масел

«Везет» (такси): отзывы водителей и пассажиров

Схема индикатора заряда аккумулятора на светодиодах

Cпособы регулирования скорости вращения асинхронного двигателя

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Стробоскоп для выставления зажигания своими руками Стробоскоп автомобильный для зажигания своими руками

Кто придумал Паровой двигатель - Когда Изобрели?

Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса

Когда и в какое время включать ближний и дальний свет, противотуманные фары и дневные ходовые огни?

Никель-кадмиевые аккумуляторы: устройство, восстановление. Как зарядить никель-кадмиевый аккумулятор? Ni-Cd аккумуляторы как заряжать и зарядные устройства Самодельное зарядное устройство для ni mn аккумуляторов

Предлагаемое универсальное зарядное устройство обеспечивает как ускоренную зарядку никель-кадмиевых (Ni-Cd) и никель-металлгидридных (Ni-MH) аккумуляторных батарей повышенным током, так и их зарядку в так называемом обычном режиме с меньшим током зарядки. При этом в первом случае окончание зарядки происходит при падении напряжения на аккумуляторе. Благодаря использованию микросхемы MC33340D данное зарядное устройство позволяет контролировать падение напряжения с чувствительностью 4 мВ. Помимо этого, с помощью перемычек можно заранее установить определенное время зарядки. При необходимости контролируется не только напряжение на аккумуляторе в режиме ускоренной зарядки, но и напряжение источника питания

устройства. Зарядка прекращается и в случае повышения температуры аккумулятора выше установленного лимита. Питание зарядного устройства осуществляется от источника постоянного напряжения 5-18 В с максимальным током 1,5 А.

Данное универсальное зарядное устройство для NiCd и NiMH аккумуляторов представляет собой регулятор, выполненный на микросхеме типа MC33340D. Принципиальная схема прибора приведена на рис. 7.


Сразу после подключения питающего напряжения универсальное зарядное устройство начинает работать в режиме ускоренной зарядки.

В том случае, если аккумулятор не подключен или неисправен, напряжение на выводе 1 (VSEN) микросхемы IC2 (MC33340D) будет либо меньше величины 1 В, либо больше, чем 2 В. При этом зарядное устройство автоматически переключится в обычный режим. В обычный режим работы данное зарядное устройство переключится и в том случае, если в течение 177 с на клеммах заряжаемого аккумулятора будет зафиксировано падение напряжения определенной ве* личины, что свидетельствует об окончании процесса зарядки. Помимо этого переключение в обычный режим может

осуществляться по окончании выбранного времени зарядки, или же при повышении температуры аккумулятора сверх допустимой нормы.

Время зарядки аккумуляторной батареи выбирается с помощью установки или удаления перемычек Т1-ТЗ. Зависимость времени зарядки от установки перемычек приведена в табл. 1.

Перемычка

Перемычка

Перемычка

Примечания

зарядки, мин

Таблица 1. Зависимость времени зарядки аккумулятора от положения перемычек

При выборе режима зарядки с отключением при повышении температуры аккумулятора сверх допустимой нормы для измерения температуры аккумуляторной батареи к выводу 6 {Т2) микросхемы IC2 следует подключить терморезистор величиной 10 кОм. При этом к выводам 7 (Т1) и 5 (ТЗ) микросхемы IC2 должны быть подключены резисторы R7 и R8, с помощью которых устанавливается диапазон допустимых температур аккумулятора. Величина сопротивления резистора R7 определяет максимальную допустимую температуру, а величина сопротивления резистора R8 определяет минимальную допустимую температуру аккумуляторной батареи. Если в процессе зарядки аккумулятора его температура будет находиться в выбранном диапазоне, то аккумулятор будет заряжаться в ускоренном режиме. В этом случае напряжение на выводах 7 (Т1), б (Т2) и 5 (ТЗ) микросхемы IC2 будет в пределах от 0 В до величины (Vcc - 0,7) В, где Vcc - напряжение питания микросхемы IC2 (вывод 8). Если же температура аккумулятора во время зарядки изменится и выйдет

из выбранного диапазона, то изменится напряжение на выводе 7 (Т1) или 5 (ТЗ) микросхемы IC2, и зарядное устройство переключится в обычный режим.

Поскольку ток, протекающий через выводы 7 (Т1), 6 (Т2) и 5 (ТЗ) микросхемы IC2 составляет примерно 30 икА, рассчитать значения величин сопротивлений резисторов R7 и R8 довольно просто. Так, например, если сопротивление терми-стора R10 при минимальной выбранной температуре составляет 8,2 кОм, то и величина сопротивления резистора R8 должна быть 8,2 кОм. Если сопротивление термистора R10 при максимальной выбранной температуре составляет 15 кОм, то и величина сопротивления резистора R7 должна быть 15 кОм.

Таким образом, при выборе режима зарядки с отключением при повышении температуры аккумулятора предлагаемая схема обеспечивает ускоренную зарядку аккумуляторной батареи только в том случае, если ее температура не выходит за установленные границы. Если в процессе зарядки температура аккумулятора станет меньше минимального предела, то зарядное устройство переключится в обычный режим, и аккумулятор будет заряжаться малым током дежурного режима до тех пор, пока его температура не войдет в норму. Если же температура аккумулятора станет больше максимального предела, то зарядное устройство также переключится в обычный режим, но не выйдет из него до отключения аккумулятора.

В том случае, если выбран режим, при котором окончание зарядки определяется истечением определенного промежутка времени, резисторы R7, R8 и терморезистор R10 не устанавливаются, а время зарядки выбирается с помощью установки перемычек Т1-ТЗ в соответствии с табл. 1. Этот вариант зарядки используется как запасной, то есть в том случае, если по каким-либо причинам нельзя провести окончание зарядки с помощью контроля падения напряжения на аккумуляторе.

Микросхема IC1 (LM317) в предлагаемой конструкции используется в качестве источника постоянного тока. Такая схема включения должна обеспечить постоянное напряжение

величиной 1,2 В между выводами ADJ и OUT данной микросхемы. Поскольку между указанными выводами включен резистор R3, через который протекает ток зарядки, этот ток всегда будет иметь величину, при которой падение напряжения на резисторе R3 равно 1,2 В.

Для корректного распознавания момента окончания зарядки аккумулятора при падении напряжения на его контактах необходимо обеспечить наличие на выводе 1 (Vsen) микросхемы IC2 напряжения, соответствующего напряжению одного элемента аккумуляторной батареи. Для этого используется делитель напряжения, выполненный на резисторах R1 и R2. Так, например, если выбрать величину сопротивления резистора R1 равной 10 кОм, величину сопротивления резистора R2 следует рассиитать по следующей формуле:


VAKK- общее номинальное напряжение аккумуляторной батареи;

VSEN- напряжение на выводе 1 микросхемы IC2, которое должно составлять 1,2 В.

При этом общее напряжение аккумуляторной батареи рассчитывается по формуле:


N- количество элементов в аккумуляторной батарее; Uj - напряжение одного элемента, которое обычно составляет 1,2 В.

Так, например, при величине сопротивления резистора R1, равной 10 кОм, для аккумулятора, состоящего из шести элементов, величина сопротивления резистора R2 будет составлять:

R2 = 10 ОООх (7,2/12 -1) = 50кОм

Если же предполагается заряжать один элемент, то резистор R1 не устанавливается, а величина сопротивления резистора R2 должна составлять 10 кОм.

В то же время изменение количества элементов в заряжа-

емой аккумуляторной батарее требует изменения напряжения UnMV поступающего от источника питания данного устройства. При этом минимальная величина напряжения источника питания рассчитывается по формуле:

ипит = 3 + 2М,

N- количество элементов в аккумуляторной батарее.

Зависимость значений величин резисторов R1 и R2, а также питающего напряжения от количества заряжаемых элементов приведена в табл. 2.

Таблица 2. Зависимость значений величин резисторов R1, R2 и питающего напряжения от количества заряжаемых элементов

Количество

Напряжение

Напряжение

заряжаемых

аккумуляторной

питания ипит, В

элементов

батареи U^, В

Необходимо отметить, что соответствующие значения величины напряжения UnHT при зарядке указанного в табл. 2 количества элементов могут быть и выше, однако это потребует дополнительного охлаждения микросхемы IC1, например, с помощью установки ее на радиатор.

Питающее напряжение микросхемы IC2 должно быть в пределах 3-18 В. В том случае, если потребуется одновременно заряжать большее количество элементов, то необходимо обеспечить, чтобы питающее напряжение микросхемы на выводе 8 микросхемы IC2 не превысило величины 18 В. При этом напряжение на выводах 2 и 3 микросхемы IC2 не должно превышать величину 20 В. г

Значение величины тока зарядки в обычном режиме (1ОР) рассчитывается по формуле:


1ор - ток зарядки в обычном режиме (А);

UmT- напряжение источника питания (В);

UD2 - падение напряжения на диоде D2 (примерно 0,6В);

UAKK- напряжение аккумуляторной батареи (В);

R5- величина сопротивления резистора R5 (Ом).

Обычно величина тока зарядки в обычном режиме выбирается равной 1/100 от значения емкости аккумуляторной батареи. При этом значение мощности, рассеиваемой на резисторе R5, определяется по формуле:


При зарядке аккумулятора в ускоренном режиме значение величины тока зарядки (Iyp) рассчитывается по формуле:


1^- ток зарядки в ускоренном режиме (А);

UICJ - выходное напряжение микросхемы IC1 (В);

IADJ- ток утечки микросхемы IC1 (примерно 50 мкА).

Величину тока зарядки в ускоренном режиме следует выбирать в зависимости от типа аккумулятора. Обычно этот ток должен быть в пределах 1-2 значения емкости аккумуляторной батареи. Ток зарядки в ускоренном режиме можно регулировать изменением сопротивления регулировочного резистора R4 в пределах, определяемых значением сопротивления резистора R3, а максимальная величина этого тока (Ij^c) не может превышать максимального допустимого значения тока для микросхемы IC1, то есть величину 1,5 А.

Минимальный ток зарядки в ускоренном режиме определяет величину сопротивления резистора R3. Значение сопротивления резистора R3 можно рассчитать, воспользовавшись следующей формулой:


Так, например, если выбрать значение минимального тою зарядки в ускоренном режиме равным 0,45 А, то сопротивле ние резистора R3 составит 2,7 Ом. При этом значение мощ ности, рассеиваемой на резисторе R3 определяется по фор муле:


Чтобы можно было в определенных пределах регулировать величину минимального тока зарядки, в предлагаемом устройстве желательно установить резистор R3 мощностью не менее 2 Вт.

Максимальный ток зарядки в ускоренном режиме с учетом выбранной величины мощности, рассеиваемой на резисторе R3 (в нашем примере 2 Вт), определяется по формуле:


В результате для выбранных параметров максимальный ток зарядки 1МАКС в ускоренном режиме будет составлять 0,86 А. Таким образом, при сопротивлении резистора R3, равном 2,7 Ом, и рассеиваемой на нем мощности 2 Вт ток зарядки можно изменять с помощью регулировочного резистора R4 в пределах от 0,45 А до 0,86 А. Такой ток считается оптимальным для пальчиковых аккумуляторов емкостью 450-850 мА.

С помощью простых расчетов можно определить значения минимального и максимального тока зарядки в ускоренном режиме в зависимости от рассеиваемой мощности и величины сопротивления резистора R3. Эти данные приведены в табл. 3.

Таблица 3. Значения минимального и максимального тока зарядки в ускоренном режиме в зависимости от рассеиваемой мощности и величины сопротивления резистора R3

Минималь-

Максималь-

Сопротивление

Рассеиваемая

Примечание

резистора

мощность, Вт

зарядки, А

зарядки, А

Все детали универсального зарядного устройства размещены на печатной плате размером 52x40 мм. Печатная плата приведена на рис. 8.


Рис. 8. Печатная плата универсального зарядного устройства

Расположение деталей на печатной плате прибора показано на рис. 9.


Рис. 9. Расположение деталей на печатной плате универсального зарядного устройства

К деталям, используемым в данном устройстве, не предъявляются какие-либо особые требования. Естественно, рекомендуется применять любые малогабаритные резисторы и конденсаторы, которые без проблем можно разместить на печатной плате.

При изготовлении зарядного устройства можно использовать, например, резисторы типа МЛТ-0,125. Вполне подойдут

и другие малогабаритные резисторы. В то же время, величина рассеиваемой мощности резистора R3, в соответствии с приведенными ранее расчетами, должна составлять 2 Вт. Конденсаторы С1 и С2 могут быть металлокерамическими или керамическими.

Диод 1N4148 (D1) можно заменить на отечественные диоды КД510, КД521 или КД522, обращая особое внимание на маркировку выводов катода и анода. Вместо диода 1N4007 (D2) можно установить отечественные диоды КД105, КД208, КД209 или КД243. Светодиод D4 - любой на ток 20 мА.

Монтаж элементов на печатной плате следует начать с установки микросхемы IC1 со стороны печатных проводников. При этом сначала необходимо аккуратно припаять один из выводов микросхемы к соответствующей контактной дорожке, а затем - все остальные выводы. Остальные элементы устанавливаются в обычном порядке, то есть сначала впаиваются пассивные малогабаритные детали, затем полупроводниковые элементы, а после этого - крупногабаритные детали.

Не следует забывать о том, что микросхему IC1 желательно установить на радиатор. Тепловое сопротивление радиатора рассчитывается по следующей формуле:


1ур - ток зарядки в ускоренном режиме (А); UniiT- напряжение источника питания (В); ^аюГ напряжение аккумуляторной батареи (В); Дг - максимально допустимая разница между температурой радиатора и температурой окружающей среды (обычно примерно 80 °С).

Если в процессе эксплуатации будет выбран режим, в котором окончание зарядки наступает по истечении определенного времени, то необходимый лимит устанавливается с помощью перемычек Т1-ТЗ. В этом случае термистор R10, а также резисторы R7 и R8 не устанавливаются.

При выборе режима зарядки с контролем температуры аккумулятора, необходимо установить термистор R10, а также резисторы R7 и R8. При этом термистор R10 должен

иметь хороший тепловой контакт с заряжаемой аккумуляторной батареей. В данном случае перемычки Т1-ТЗ не устанавливаются. При использовании зарядного устройства в указанном режиме для зарядки аккумуляторных батарей мобильных телефонов устаревших типов в качестве термистора R1G можно использовать терморезистор, входящий в состав аккумулятора. К схеме этот термистор подключается через соответствующие контакты аккумуляторной батареи. В то же время желательно произвести перерасчет величин сопротивлений резисторов R7 и R8 с учетом параметров термистора для каждого типа заряжаемого аккумулятора.

После того, как все компоненты будут установлены на печатной плате, еще раз следует проверить правильность монтажа. В последнюю очередь к печатной плате припаиваются выводы для подключения источника питающего напряжения; а также контакты для подключения заряжаемого аккумулятора.

Плата с размещенными на ней деталями располагается в любой подходящей пластмассовой коробке.

Собранное без ошибок и из исправных деталей зарядное устройство не нуждается в дополнительном налаживании. Однако перед включением прибора и подключением аккумулятора необходимо еще раз проконтролировать, соответствуют ли величины сопротивлений резисторов делителя R1R2 напряжению подключаемого аккумулятора. После этого универсальное зарядное устройство можно подключить к сети и проверить его работоспособность.

При подключении источника питающего напряжения (с отключенным аккумулятором) должен начать светиться светоди-од D4. Если этого не произошло, то необходимо отключить питающее напряжение и еще раз проверить правильность монтажа и исправность элементов конструкции. Если же све-тодиод D4 светится, то к зарядному устройству можно подключать аккумуляторную батарею. После подключения аккумулятора светодиод должен начать мигать.

Окончание зарядки аккумуляторной батареи определяется в соответствии с выбранным режимом работы.


Зачастую нет необходимости конструировать сложные устройства, которые учитывают много параметров разрядно-зарядного цикла аккумуляторов. Достаточно учесть пару-тройку таких параметров как напряжение окончания разрядки, напряжение окончания зарядки и зарядный ток. Выбранные параметры цикла предотвращают избыточную или недостаточную зарядку аккумуляторов, что в последствии увеличивает их срок службы.

Устройство питается от нестабилизированного источника с выходным током не менее 100 мА, напряжение которого с учётом пульсаций должно находиться в пределах 11,5...30 В.

Схема:


Микросхема DA1 стабилизирует напряжение питания 9 В для остальных узлов устройства. Основой устройства является триггер Шмитта на транзисторах VT1 и VT2, последний из которых включён как эмиттерный повторитель. Петля гистерезиса стабильна во времени и достаточно просто регулируется. Конденсатор СЗ защищает триггер Шмитта от ложных переключений при воздействии помех.
Состояние триггера Шмитта зависит от напряжения заряжаемой батареи, подключённой к выходу устройства. При напряжении 4 В и менее на эмиттере транзистора VT2 устанавливается высокий уровень напряжения, а при 5,92 В и более - низкий. Низкий уровень выходного напряжения на эмиттере VT2 не равен нулю и составляет 0,3 В, поэтому для исключения влияния нагрузки на нижний порог переключения триггера Шмитта применены развязывающие диоды VD1 и VD2, которые при таком напряжении не открываются.
Транзистор VT3, работает в ключевом режиме и управляет стабилизатором зарядного тока на транзисторе VT4, светодиоде HL1 и резисторе R11. Светодиод HL1 использован как стабистор и индикатор режима зарядки. Ток зарядки устанавливают путём подбора резистора R11 . Благодаря двойной стабилизации напряжения (микросхемой DA1 и светодиодом HL1) стабильность коллекторного тока транзистора VT4 достаточно высока(он не изменялся при подключении к выходу батареи, состоящей от двух до пяти элементов различной разряженности во время испытаний). Диод VD4 предотвращает разрядку батареи через стабилизатор тока после отключения питания устройства.
Через транзистор VT5, тоже работающий в режиме ключа, и резистор R13 осуществляется разрядка батареи до тех пор, пока тринистор VS1 закрыт. После открывания тринистора VS1 разрядка прекращается и светодиод HL2 - индикатор режима разрядки гаснет.

Работа устройства:
Сначала к ЗУ подключают батарею из четырёх аккумуляторов и затем подают напряжение питания. Пока напряжение батареи превышает 4 В (в среднем 1 В на элемент) транзистор VT1 открыт, транзисторы VT2-VT4, диоды VD1-VD4 и тринистор VS1 закрыты. Транзистор VT5 открыт и насыщен, через него и резистор R13 батарея разряжается. Светодиод HL2 включён. Ток разрядки не следует устанавливать больше 1/10 ёмкости батареи.

Когда напряжение батареи в процессе разрядки станет менее 4 В, триггер Шмитта переключится, транзистор VT1 закроется, a VT2 откроется. На выходе триггера Шмитта установится напряжение высокого уровня (около 8 В). Диод VD1 и тринистор VS1 открываются, в результате чего откроется и диод VD3, закроется транзистор VT5, светодиод HL2 погаснет, режим разрядки прекратится. Одновременно напряжение высокого уровня с выхода триггера Шмитта откроет диод VD2 и транзистор VT3, в результате чего загорится светодиод HL1, откроются транзистор VT4 и диод VD4, через которые начнётся зарядка батареи стабильным током.
Нажатием на кнопку SB1, устройство принудительно переключается из режима разрядки в режим зарядки. Это необходимо, если используются Ni-MH аккумуляторы, которые не подвержены "эффекту памяти" и, соответственно, не нуждаются в предварительной разрядке.

В процессе зарядки, когда напряжение батареи достигнет 5,92 В (в среднем 1,48 В на элемент), триггер Шмитта переключится: транзистор VT1 откроется, a VT2 закроется. Закроются диод VD2 и транзистор VT3, светодиод HL1 погаснет, в результате чего закроются транзистор VT4 и диод VD4, а процесс зарядки прекратится. Но тринистор VS1 остаётся открытым, поэтому транзистор VT5 не откроется и режим разрядки не включится. После выключения питания устройства необходимо отключить от него батарею, в противном случае она будет разряжаться.

Монтаж и комплектующие:
Транзисторы КТ315Б (VT1-VT3) можно заменить транзисторами КТ315Г или КТ315Е. Можно применить и другие кремниевые маломощные транзисторы структуры n-p-n с максимальным током коллектора не менее 100 мА, но для триггера Шмитта желательно подобрать транзисторы с коэффициентом передачи тока базы не менее 50. Транзисторы VT4 и VT5 - любые из серий КТ814, КТ816. Они установлены на теплоотводах из полосок мягкого алюминия размерами 28x8 мм и толщиной 1 мм, согнутых в виде буквы "П". Диоды - любые кремниевые маломощные, кроме VD4, который должен выдерживать ток зарядки. Подстроечные резисторы R2 и R5 - многооборотные СП5-2. Светодиоды HL1 и HL2 желательно применить разного цвета свечения для однозначной индикации режима работы устройства.

Настройка:
Для налаживания устройства необходима вспомогательная батарея 9... 12 В, к которой подключён потенциометром переменный резистор сопротивлением несколько кОм. Для облегчения точной установки необходимого напряжения в разрыв цепи одного из крайних выводов этого резистора желательно включить как реостат другой переменный резистор в десять раз меньшего сопротивления.

Движки подстроечных резисторов R2 и R5 устанавливают в нижнее по схеме положение. Временно разрывают соединение левого по схеме вывода резистора R1 с плюсовым выходом устройства. На время налаживания этот вывод становится входом устройства, который соединяют с движком переменного резистора. Минусовый вывод вспомогательной батареи соединяют с общим проводом устройства. Заряжаемую батарею к выходу не подключают. После включения питания необходимо убедиться в наличии стабильного напряжения 9 В на выходе микросхемы DA1.

Затем устанавливают пороги переключения. Вольтметр подключают к эмиттеру транзистора VT2. Вначале движком подстроечного резистора R2 устанавливают нижний порог переключения 4 В. При снижении входного напряжения ниже этого порога на 0,05...0,1 В должен закрываться транзистор VT1 и устанавливаться высокий уровень напряжения на эмиттере транзистора VT2. Затем движком подстроечного резистора R5 устанавливают верхний порог переключения 5,92 В. При увеличении входного напряжения выше этого порога на 0,05...0,1 В транзистор VT2 должен открываться и устанавливаться низкий уровень напряжения на эмиттере транзистора VT2. Проверяют оба порога переключения.

Далее проверяют, что после открывания транзистора VT2 тринистор VS1 также открывается. Если это не так, уменьшают сопротивление резистора R6, добиваясь чёткого открывания тринистора. Для выключения тринистора кратковременно отключают напряжение питания.

Наконец, к выходу устройства подключают последовательно соединённые миллиамперметр и заряжаемую батарею. В режиме зарядки подборкой резистора R9 устанавливают желаемую яркость свечения светодиода HL1, а подборкой резистора R11 - требуемый ток зарядки. Далее отключают вспомогательную батарею и восстанавливают соединение левого по схеме вывода резистора R1 с плюсовым выходом устройства. Тринистор VS1 отключают. Мультиметр подключают к выходу устройства в режиме измерения напряжения. Наблюдают процесс зарядки батареи и автоматическое переключение устройства в режим разрядки после достижения выходного напряжения 5,92 В. Далее в режиме разрядки резистором R12 устанавливают яркость свечения светодиода HL2 и начальный ток разрядки подборкой резистора R13. Затем подключают тринистор VS1 и переключают устройство в режим зарядки. По его окончании необходимо убедиться, что тринистор VS1 открылся и предотвратил включение режима разрядки.

Сильный нагрев аккумуляторов в конце зарядки, говорит о том, что слишком велик зарядный ток, его необходимо уменьшить, но при этом увеличится время зарядки.

Г. ВОРОНОВ, г. Ставрополь "Радио" №1 2012г.

Благодаря совершенствованию производства Ni-Cd-батареи сегодня применяются в большинстве портативных электронных устройств. Приемлемая стоимость и высокие эксплуатационные показатели сделали представленную разновидность аккумуляторов популярной. Такие устройства сегодня широко применяются в инструментах, фотоаппаратах, плеерах и т. д. Чтобы батарея прослужила долго, необходимо узнать, как заряжать Ni- Cd-аккумуляторы . Придерживаясь правил эксплуатации подобных устройств, можно значительно продлить срок их службы.

Основные характеристики

Чтобы понять, как заряжать Ni- Cd-аккумуляторы , необходимо ознакомиться с особенностями подобных приборов. Их изобрел В. Юнгнер еще в далеком 1899 году. Однако их производство было тогда слишком затратным. Технологии совершенствовались. Сегодня в продаже представлены простые в эксплуатации и относительно недорогие батареи никель-кадмиевого типа.

Представленные устройства требуют, чтобы заряд происходил быстро, а разряд медленно. Причем опустошение емкости батареи необходимо выполнять полностью. Подзарядка производится импульсными токами. Этих параметров следует придерживаться на протяжении всего срока эксплуатации устройства. Зная, Ni- Cd, можно продлить срок его службы на несколько лет. При этом подобные батареи эксплуатируются даже в самых тяжелых условиях. Особенностью представленных аккумуляторов является «эффект памяти». Если периодически не разряжать батарею полностью, на пластинах ее элементов будут формироваться крупные кристаллы. Они снижают емкость аккумулятора.

Преимущества

Чтобы понять, как правильно заряжать Ni-Cd-аккумуляторы шуруповерта, фотоаппарата, камеры и прочих портативных приборов, необходимо ознакомиться с технологией этого процесса. Она простая и не требует особых знаний и умений от пользователя. Даже после длительного хранения батареи ее можно быстро зарядить снова. Это одно из преимуществ представленных устройств, которые делают их востребованными.

Никель-кадмиевые батареи обладают большим количеством циклов заряда и разряда. В зависимости от производителя и условий эксплуатации этот показатель может достигать более 1 тысячи циклов. Преимуществом Ni-Cd-батареи является ее выносливость и возможность работы в нагруженных условиях. Даже при эксплуатации ее на морозе оборудование будет работать исправно. Его емкость в таких условиях не меняется. При любой степени зарядки аккумулятор можно будет хранить длительное время. Немаловажным преимуществом его является низкая стоимость.

Недостатки

Одним из недостатков представленных устройств является факт, что пользователь обязательно должен изучить, как правильно заряжать Ni- Cd-аккумуляторы. Представленным батареям, как уже говорилось выше, присущ «эффект памяти». Поэтому пользователь должен периодически проводить профилактические мероприятия по его устранению.

Энергетическая плотность представленных аккумуляторов будет несколько ниже, чем у других разновидностей автономных источников питания. К тому же при изготовлении этих приборов применяются токсичные, небезопасные для экологии и здоровья людей материалы. Утилизация подобных веществ требует дополнительных затрат. Поэтому в некоторых странах применение подобных аккумуляторов ограничено.

После длительного хранения Ni- Cd -батареи требуют проведения цикла заряда. Это связано с высокой скоростью саморазряда. Это также является недостатком их конструкции. Однако, зная, как правильно заряжать Ni- Cd-аккумуляторы , правильно их эксплуатировать, можно обеспечить свою технику автономным источником питания на долгие годы.

Разновидности зарядных устройств

Чтобы правильно заряжать аккумулятор никель-кадмиевого типа, нужно применять специальное оборудование. Чаще всего оно поставляется в комплекте с батареей. Если же зарядного устройства по каким-то причинам нет, можно приобрести его отдельно. В продаже сегодня представлены автоматические и реверсивные импульсные разновидности. Применяя первый тип устройств, пользователю не обязательно знать, до какого напряжения заряжать Ni- Cd-аккумуляторы . Процесс выполняется в автоматическом режиме. При этом одновременно можно заряжать или разряжать до 4 батареек.

При помощи специального переключателя устройство устанавливается в режим разрядки. При этом цветовой индикатор будет светиться желтым цветом. Когда эта процедура будет выполнена, прибор самостоятельно переключается в режим зарядки. Загорится красный индикатор. Когда аккумулятор наберет требуемую емкость, устройство перестанет подавать на батарею ток. При этом индикатор загорится зеленым светом. Реверсивные относятся к группе профессионального оборудования. Они способны выполнять несколько циклов зарядки и разрядки с разной длительностью.

Специальные и универсальные зарядные устройства

Многих пользователей интересует вопрос о том, как заряжать аккумулятор шуруповерта Ni- Cd типа. В этом случае не подойдет обычный прибор, рассчитанный на пальчиковые батарейки. В комплекте с шуруповертом чаще всего поставляется специальное зарядное устройство. Именно его следует применять при обслуживании батареи. Если же зарядного устройства нет, следует приобрести оборудование для аккумуляторов представленного типа. При этом можно будет зарядить только батарею шуруповерта. Если в эксплуатации имеются батареи различного типа, стоит приобрести универсальное оборудование. Оно позволит обслуживать автономные источники энергии практически для всех устройств (камеры, шуруповерта и даже АКБ). Например, сможет заряжать Ni-Cd-аккумуляторы iMAX B6. Это простой и полезный в хозяйстве прибор.

Разрядка прессованной батареи

Особой конструкцией характеризуются прессованные Ni- и выполнять разрядку представленных устройств, зависит от их внутреннего сопротивления. На этот показатель влияют некоторые конструкционные особенности. Для длительной работы оборудования применяются аккумуляторы дискового типа. Они имеют плоские электроды достаточной толщины. В процессе разрядки их напряжение медленно падает до 1,1 В. Это можно проверить при помощи построения графика кривой.

Если батарею продолжить разряжать до показателя 1 В, ее разрядная емкость составит 5-10% от первоначального значения. Если ток увеличить до 0,2 С, существенно снижается напряжение. Также это касается и емкости батареи. Это объясняется невозможностью разрядить массу по всей поверхности электрода равномерно. Поэтому сегодня толщину их снижают. При этом в конструкции дисковой батареи присутствует 4 электрода. Их можно в этом случае разряжать током 0,6 С.

Цилиндрические батареи

Сегодня широко применяются батареи с металлокерамическими электродами. Они обладают малым сопротивлением и обеспечивают высокие энергетические показатели устройства. Напряжение заряженного Ni- Cd-аккумулятора этого типа удерживается на уровне 1,2 В до потери 90% заданной емкости. Около 3% ее теряется при последующем разряде с 1,1 до 1 В. Представленный тип батарей допускается разряжать током 3-5 С.

Электроды рулонного типа установлены в цилиндрических аккумуляторах. Их можно разряжать током с более высокими показателями, который находится на уровне 7-10 С. Показатель емкости будет максимальным при температуре +20 ºС. При ее увеличении это значение несущественно меняется. Если температура снизится до 0 ºС и ниже, разрядная емкость уменьшается прямопропорционально приросту разрядного тока. Как заряжать Ni- Cd-аккумуляторы, разновидности которых представлены в продаже, необходимо рассмотреть подробно.

Общие правила зарядки

При совершении зарядки никель-кадмиевого аккумулятора крайне важно ограничивать излишний ток, поступающий на электроды. Это необходимо из-за роста внутри устройства при таком процессе давления. При зарядке будет выделяться кислород. Это влияет на коэффициент использования тока, который будет снижаться. Существуют определенные требования, которые объясняют, как заряжать Ni- Cd-аккумуляторы. Парамерты процесса учитывают производители специального оборудования. Зарядные устройства в процессе своей работы сообщают батарее 160% от номинального значения емкости. Интервал температур на протяжении всего процесса должен оставаться в рамках от 0 до +40 ºС.

Режим стандартной зарядки

Производители обязательно указывают в инструкции, сколько заряжать Ni- Cd-аккумулятор и каким током это нужно делать. Чаще всего режим выполнения этого процесса стандартный для большинства разновидностей батарей. Если аккумулятор имеет напряжение 1 В, его зарядка должна выполняться в течение 14-16 часов. При этом ток должен быть 0,1 С.

В некоторых случаях характеристики процесса могут немного отличаться. На это влияют конструкционные особенности устройства, а также увеличенная закладка активной массы. Это необходимо для наращивания емкости батареи.

Пользователя также может интересовать, каким током заряжать аккумулятор Ni- Cd . В этом случае есть два варианта. В первом случае ток будет постоянным в течение всего процесса. Второй вариант позволяет длительно заряжать аккумулятор без риска его повреждения. Схема предполагает применение ступенчатого или плавного снижения тока. На первой стадии он будет значительно превышать показатель 0,1 С.

Ускоренная зарядка

Существуют и другие способы, которые приемлют Ni- Cd-аккумуляторы. Как заряжать батарею этого тип в ускоренном режиме? Здесь существует целая система. Производители увеличивают скорость этого процесса благодаря выпуску особых устройств. Они могут заряжаться при повышенных показателях тока. В этом случае прибор обладает особой системой контроля. Она предупреждает сильный перезаряд аккумулятора. Такую систему может иметь либо сама батарея, либо ее зарядное устройство.

Цилиндрические разновидности устройств заряжают током постоянного типа, величина которого составляет 0,2 С. Процесс при этом будет длиться всего 6-7 часов. В некоторых случаях допускается заряжать батарею током 0,3 С в течение 3-4 часов. В этом случае контроль процесса крайне необходим. При ускоренном выполнении процедуры показатель перезаряда должен составлять не более 120-140% емкости. Существуют даже такие аккумуляторы, которые можно будет зарядить полностью всего за 1 час.

Прекращение зарядки

Изучая вопрос того, как заряжать Ni- Cd-аккумуляторы, необходимо рассмотреть завершение процесса. После того как ток перестает поступать на электроды, внутри батареи давление все еще продолжает расти. Этот процесс происходит из-за окисления на электродах гидроксильных ионов.

В течение некоторого времени происходит постепенное уравнение скорости выделения кислорода и поглощения на обоих электродах. Это приводит к постепенному понижению давления внутри аккумулятора. Если перезаряд был существенным, этот процесс будет выполняться медленнее.

Настройка режима

Чтобы правильно зарядить Ni- Cd-аккумулятор , необходимо знать правила настройки оборудования (если они предусмотрены производителем). Номинальная емкость батареи должна иметь ток заряда до 2 С. Необходимо выбрать тип импульса. Он может быть Normal, Re-Flex или Flex. Порог чувствительности (понижение давления) должен составлять 7-10 мВ. Его еще называют Delta Peak. Его лучше выставлять на минимальном уровне. Ток подкачки требуется установить в диапазоне 50-100 мА-ч. Чтобы иметь возможность полноценно использовать мощность аккумулятора, нужно выполнять зарядку большим током. Если же требуется его максимальная мощность, аккумулятор заряжают малым током в нормальном режиме. Рассмотрев, как заряжать Ni- Cd-аккумуляторы, каждый пользователь сможет выполнить этот процесс правильно.

Данное зарядное устройство можно применить как для заряда никель-кадмиевых, так и для никель-металлгидридных аккумуляторов. Если у вас li-ion аккумулятор, то вам скорее нужна .

Описание работы зарядного для никель-кадмиевых и никель-металлгидридных аккумуляторов

Схема обеспечивает не быструю но эффективную зарядку поскольку заряд осуществляется стандартным током — одной десятой емкости батареи в комбинации с временем зарядки от 10 до 14 часов, без риска чрезмерной зарядки. Если вы уверены, что батарея разряжена только на половину, то зарядить ее полностью можно примерно за 6…7 часов.

Аккумуляторы размера AA имеют емкость от 1500 до 1800 мАч (миллиампер-час), так что ток зарядки должно быть от 150 до 180 мА. Если вы хотите зарядить несколько никель-кадмиевых аккумуляторов сразу, достаточно просто подключить их последовательно, для того же ток зарядки, который будет протекать через всю батарею аккумуляторов, заряжая их одновременно.

Вопрос теперь в том, как получить нам постоянный ток 180 мА. Самым элегантным и точным решение будет использование источника тока. В этой роли может выступить включенный по схеме источника тока. Микросхема LM317 достаточно известная и регулировки осуществляется путем подбора сопротивления резистора, который подключается к выводам OUT и ADJ.

В нашем случае (для 0,18 А), сопротивление будет равно 6,94 Ом (1,25/0,18) = 6,94 Ом. Данный номинал можно набрать из несколько последовательно-параллельно соединенных резисторов, но проще взять близкое стандартное значение 6,8 Ом.

Чтобы получить ток 180 мА нужно некоторое напряжение. Максимальное напряжение во время зарядки никель-кадмиевого аккумулятора составляет 1,5 В, а источник тока требуется около 3 В. Если заряжать только один аккумулятор, напряжение питания составит 4,5 В.

Если заряжается несколько никель-кадмиевых аккумуляторов сразу, нужно 1,5 В умножить на число аккумуляторов плюс 3 В. Для четырех аккумуляторов это будет напряжение питания 9 В. Если напряжение слишком низкое, ток заряда будет слабым.

На этот раз речь пойдет о конструировании простейшего USB-зарядника для Ni-Cd и Ni-Mh аккумуляторных батарей.

Схема довольно хорошего зарядника проста и может быть реализована с бюджетом всего в 20 рублей. Это уже дешевле, чем любая китайская зарядка. Сердцем нашего зарядного устройства всем хорошо знакомая микросхема линейного стабилизатора LM317.


На вход схемы подается напряжение 5 В от любого USB-порта.


Микросхема стабилизирует напряжение до уровня 1,5 В. Это напряжение полностью заряженного Ni-Mh аккумулятора.

А работает устройство очень просто. Аккумулятор будет заряжаться напряжением 1,5-1,6 Вольт от микросхемы. Резистор R1 в качестве датчика тока одновременно ограничивает ток заряда. Путем его подбора ток можно уменьшить или увеличить.

Когда на выход схемы подключен аккумулятор, на резисторе R1 образуется падение напряжения. Его достаточно для срабатывания транзистора, в коллекторную цепь которого подключен светодиод. Последний загорается и по мере заряда аккумулятора будет потухать до полного отключения. Это произойдет в конце зарядного процесса.

Таким образом, диод горит, когда аккумулятор заряжается, и тухнет, когда последний полностью заряжен. Одновременно по мере заряда аккумулятора будет снижаться сила тока, и в конце ее значение будет равно 0.

Из этого следует, что перезаряд и выход из строя аккумулятора невозможны.

Микросхема LM317 работает в линейном режиме, поэтому небольшой теплоотвод не помешает. Хотя при токе 300 мА нагрев микросхемы в пределах нормы. Светодиод желательно подобрать с минимальным рабочим напряжением. Цвет абсолютно не важен. Вместо BC337 допускается использование любого маломощного транзистора обратной проводимости, хоть на КТ315. Желательная мощность резистора R1 0,5-1 Ватт. Все оставшиеся резисторы – 0,25 и даже 0,125 Ватт. Поскольку диапазон напряжений очень узкий, то даже погрешность резисторов может повлиять на работу схемы. Поэтому резистор R2 настоятельно рекомендуется заменить на многооборотный сопротивлением 100 Ом.

С его помощью можно очень точно отрегулировать нужное выходное напряжение.

Сперва нужно найти все необходимые компоненты, а также слот для батареек.

Устройство может заряжать аккумуляторы практически любого стандарта, если приспособить соответствующий слот. При сборке можно не использовать печатную плату. Монтаж делается навесным способом. Компоненты приклеиваются под слот батареек и заливаются термоклеем, поскольку схема очень надежна в работе.


Собранное устройство выглядит примерно так:


Но может выглядеть гораздо лучше.

Только необходимо подобрать светодиод с минимально возможным напряжением свечения, в противном случае он может вообще не светиться. По этой схеме можно заряжать несколько аккумуляторов, но рекомендуется использовать только для заряда одного.



Вам также будет интересно:

Антенны из пивных баночек
Эти баночные антенны в основном хвалят. Вот и я решил проверить, какой реальный диапазон...
Муфта продольно-свертная Размеры канавок валов
под фиксирующие полукольца и крепежные изделия
Элементы приводов, ременных и цепных передач - Муфты - Жесткие соединительные муфты -...
Необслуживаемый регенерационный пункт НРП-К12 Какую функцию выполняет ДП
Необслуживаемые усилительные и регенерационные пункты (НУП и НРП) являются составными...
Автомасла и все, что нужно знать о моторных маслах Если мало масла в коробке ваз 2107
Долговечность и надежность всех узлов и агрегатов машины зависит от качества их смазки, в...
Какие могут быть последствия
Замена ГРМ Renault Logan 1.6 л. (8 клапанов) несложная процедура, однако кое какие...