Автомобильный - Mirtaxibel

Автомасла и все, что нужно знать о моторных маслах Если мало масла в коробке ваз 2107

Какие могут быть последствия

Характеристика светодиодных ламп для авто ближнего и дальнего света H4 Диодные автолампы h4

Зажигание мотоцикла, какие системы бывают — всё о них Что такое магнето?

Смазка для подшипников какая лучше?

Группы базовых масел American Petroleum Institute Конкурентные преимущества Liqui Moly в секторе специальных масел

«Везет» (такси): отзывы водителей и пассажиров

Схема индикатора заряда аккумулятора на светодиодах

Cпособы регулирования скорости вращения асинхронного двигателя

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Куда звонить и что делать при ДТП?

Как вызвать ГАИ при ДТП: что делать и куда звонить

Схемы приставки к зарядному устройству. Приставка автомат к зарядному устройству

Эта приставка, схема которой изображена на рисунке, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12 В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки, например, с промышленным Рассвет-2.

При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1. С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.

После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряженного конденсатора С1.

В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.

При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.

Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями, данными в [Л].

Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см 2 каждый. В приставке применен конденсатор К50-15 на максимально допустимую рабочую температуру +125 °С; его можно заменить конденсаторами больших размеров на номинальное напряжение не менее 160 В, например, К50-22, К50-27 или К50-7 (емкостью 500 мкФ). Резистор R1 -МЛТ-0,5, a R2 - С5-15 или изготовленный самостоятельно.

Кроме указанного на схеме транзистора КТ827 А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г - КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи - как только напряжение ва ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8..13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата

Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SA1 и двух цепей индикации- на светодиодах HL1 и HL2. Первая цепь индицирует режим зарядки, вторая - контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата.

Если в зарядном устройстве есть стрелочный индикатор - амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТЗ и усилитель тока на транзисторе VТ1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним н нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Рис. I. Принципиальная схема приставки-автомата.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод - катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистор pa VT1 питаются от разных источников: базовая - от аккумуляторной батареи, а коллекторная - от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений - выключений зарядного тока, необходимых для подзарядки ак-кумуляібрной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом-к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего Напряжения на выходе зарядного устройства через управляющий электрод тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VT1).

А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того," подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройствя (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SA1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через "резистор R2 управляющий электрод тринистора окажется" подключенным непосредственно к выводам зарядного устройства". Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Детали и конструкция

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А - Г; VГ2 и VТ3 - КТ603А - КТ603Г; диод VD1-любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 - Д814А, Д814Б, Д808, Д809; тринистор - серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды - любые из серий АЛ 102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы - МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (Rl, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 - СП5-16Б, но подойдет другой, сопротивлением 330 Ом... 1,5 кОм.

Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2) из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив сси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SA1.

Рис. 2. Печатная плата приставки-автомата.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм - для обеспечения конвекции воздуха.

Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод HL1) -к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12.8...13 В и погасал при 14,2...14,7 В.

А. Коробков.

Коробков Александр Васильевич - ведущий специалист одного из московских предприятий, родился в 1986 году. Радиолюбительством занялся в школе, где восьмиклассником собрал детекторный приемник. Через два года осилил супергетеродин. В 60-е годы разработал и собрал транзисторный магнитофон. К этому же периоду относятся первые публикации в журнале «Радио». Немного позже стал публиковаться и в сборнике ВРЛ. Основная тематика публикаций в последнее десятилетие - автомобильная влектроника.

В статье рассматривается схема несложного устройства, дополнив которым ваше зарядное устройство (ЗУ), процесс зарядки может быть автоматизирован. Так же оно поможет содержать ваш аккумулятор в заряженном состоянии в период длительного хранения, что способствует значительному увеличению его срока службы.

Устройства представляет собой электронное реле, следящее за напряжением подключенного аккумулятора. Реле имеет два порога срабатывания по наибольшему и наименьшему значению напряжения, выставленным в процессе наладки.

Контактная группа К1.1 подключается в разрыв одного из проводов, идущего на клеммник для подключения аккумуляторной батареи. Устройство также запитано с этого клеммника.

Настройка устройства. Для настройки узла понадобится источник питания с регулируемым значением напряжения. Подаем питание на вход XS1 (рис. 1). Устанавливаем движок резистора R 2 в верхнее по схеме положение, а R3 в нижнее. Выставляем значение напряжения 14,5 В. При этом транзистор VT 2 должен быть закрыт, а реле К1 должно быть обесточено. Регулировкой R 3 добиваемся срабатывания реле К1. Теперь устанавливаем напряжение в 12,9 В, регулировкой R 2 добиваемся выключения К1.

Т.к контакты реле К1.2, в отключенном состоянии, шунтируют резистор R 2, настройки срабатывания и отключения К1 являются независимыми друг от друга.

О деталях устройства. Резисторы R 2, R 3 подстроечные, тип СП-5, прецизионный стабилитрон Д818 можно заменить на два включенных встречно Д814 с близкими значениями стабилизации напряжения. Реле К1 с напряжением питания 12 В, с двумя группами нормальнозамкнутых контактов. Контактная группу К1.1, должна быть рассчитанна на ток зарядки аккумулятора.

Зарядные устройства аккумуляторов автомобилей рекомендуется оснащать автоматом, подключающего его при снижении напряж. на аккумуляторе до минимального значения и выключающего по завершению заряда. В особенности это необходимо при применении в роли запасного источника питания или при продолжительном хранении батареи без эксплуатирования — для предупреждения саморазряда.

Описание работы автомата для отключения зарядного устройства

Описываемая электрическая автомата для отключения зарядного устройства вкл аккумулятор на зарядку при снижении на нем напряж. до заданного уровня и выключает при достижении максимума. Предельным напряжением для кислотных аккумуляторов автомобиля служит напряжение 14,2-14,5 вольт, а минимальным разрешенным при разряде — 10,8 вольт. Минимальное рекомендуется лимитировать для пущей надежности напряжением 11,5…12 вольт.

Приведенная электрическая схема содержит компаратор на транзисторах VT1, VT2 и ключ на VT3, VT4. Функционирует электрическая схема следующим образом. Вслед за подсоединением АБ и и подачи напряжения электросети необходимо нажать кнопку SB1 «Пуск». Транзисторы VT1 и VT2 запираются, отпирая ключ VT3, VT4, который активирует электрореле К1.

Реле своими нормально замкнутыми выводами К1.2 выключает электрореле К2, нормально замкнутые выводы которого (К2.1), подсоединяют зарядное устройство (ЗУ) к сети. Такая сложная электрическая схема подключений применяется по 2-м причинам:

  • во-первых, создается гальваническая развязка высоковольтной электроцепи от низковольтной;
  • во-вторых, для того чтобы электрореле К2 активировалось при максимальном напряж. аккумулятора и отключалось при минимальном, т.к. используемое электрореле РЭС22 (паспорт РФ 4500163) имеет рабочее напряжение равное 12…12,5 В.

Контакты К1.1 электрореле К1 переводятся в нижнее по схеме положение. В течении заряда аккумулятора потенциал на сопротивлениях R1 и R2 увеличивается, и при достижении на базе VT1 открывающего напряжения, транзисторы VT1 и VT2 отпираются, запирая ключ VT3, VT4.

Реле К1 выключается, включая К2. Нормально замкнутые выводы К2.1 размыкаются и отключают зарядное устройство. Выводы К1.1 переключаются в верхнее по схеме положение. Сейчас потенциал на базе составного транзистора VT1, VT2 обусловливается падением напряж. на сопротивлениях R1 и R2. В ходе разряда АБ потенциал на базе VT1 уменьшается, и в определенный момент VT1, VT2 закрываются, открывая ключ VT3, VT4. Вновь осуществляется цикл заряда. Емкость С1 предназначена для ликвидации помех от дребезга контактов К1.1 в время переключения.

Настройка автомата для отключения зарядного устройства

Настройку прибора делают без аккумулятора и зарядного устройства. Нужен регулируемый блок питания с пределами регулировки 10…20 В. Его подсоединяют к контактам электрической схемы взамен GB1. Движок сопротивления R1 переводят в верхнее положение, а движок R5 — в нижнее. Напряжение источника делают равным мин напряжению аккумулятора (11.5…12 В).

Двигая движок R5 добиваются включения электрореле К1 и светодиода VD7. Потом, увеличивая напряжение блока питания до 14,2…14,5 вольт, перемещением движка потенциометра R1 добиваются выключения К1 и светодиода. Меняя напряжение блока питания в обе стороны, убеждаются, что подключение автомата совершается при напряж. 11,5…12 В, а выключение — при 14,2…14,5 В. На этом настройка заканчивается. В роли R1 и R5 рекомендуется применять многооборотные переменные резисторы марки СП5-3 или похожие.

К.Селюгин, г.Новороссийск

Вам также будет интересно:

Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса
Коллекторные двигатели постоянного тока получили широкое распространение за счет своей...
Когда и в какое время включать ближний и дальний свет, противотуманные фары и дневные ходовые огни?
Несколько лет назад в правила дорожного движения и техрегламент были внесены особые...
Антенны из пивных баночек
Эти баночные антенны в основном хвалят. Вот и я решил проверить, какой реальный диапазон...
Муфта продольно-свертная Размеры канавок валов
под фиксирующие полукольца и крепежные изделия
Элементы приводов, ременных и цепных передач - Муфты - Жесткие соединительные муфты -...
Необслуживаемый регенерационный пункт НРП-К12 Какую функцию выполняет ДП
Необслуживаемые усилительные и регенерационные пункты (НУП и НРП) являются составными...