Автомобильный - Mirtaxibel

Автомасла и все, что нужно знать о моторных маслах Если мало масла в коробке ваз 2107

Какие могут быть последствия

Характеристика светодиодных ламп для авто ближнего и дальнего света H4 Диодные автолампы h4

Зажигание мотоцикла, какие системы бывают — всё о них Что такое магнето?

Смазка для подшипников какая лучше?

Группы базовых масел American Petroleum Institute Конкурентные преимущества Liqui Moly в секторе специальных масел

«Везет» (такси): отзывы водителей и пассажиров

Схема индикатора заряда аккумулятора на светодиодах

Cпособы регулирования скорости вращения асинхронного двигателя

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Куда звонить и что делать при ДТП?

Как вызвать ГАИ при ДТП: что делать и куда звонить

Управление генератором сигналов на pic схема. Управляемый генератор прямоугольных колебаний на ATtiny2313

Радиолюбителям, схемотехникам иногда необходимо настроить какое-нибудь цифровое устройство, как например, счетчик импульсов, тахометр, осциллограф и т.п. Или просто узнать, работает ли оно. Очень удобно пользоваться генератором, выдающим прямоугольные импульсы различной частоты.

Проект такого генератора я и хочу предложить.

Сначала схема генератора импульсов:

Основу устройства составляет популярный микроконтроллер ATmega8 фирмы Atmel.

Описание схемы. Вся схема питается напряжением 5 В. Микроконтроллер тактируется частотой 8 МГц, которая стабилизирована кварцем Х1. Для генерации импульсов используется таймер/счетчик №1. В виде кнопок на схеме, подключенных к выводам PC3, PC4 и PC5 изображен энкодер. Две крайних кнопки заменяют переключение энкодера при вращении, а кнопка посередине – это кнопка энкодера, замыкающаяся при нажатии на его ось. Прямоугольные импульсы заданной с помощью энкодера частоты амплитудой 5 В снимаются с выхода таймера 1 (OCR1A). Для отображения выходной частоты применяется 16-и символьный однострочный ЖК-дисплей WH1601, подключенный к порту D микроконтроллера. Дисплей тоже распространенный, на драйвере HD44780. Резистором R1 регулируется контраст дисплея. Обмен данными между МК и дисплеем организован с помощью 4-х проводной шины. Разъем J1 для внутрисхемного программирования МК.

Теперь о программе для микроконтроллера.

Программа написана в среде разработки CodeVisionAVR . В данной среде имеются готовые библиотеки для работы с дисплеем, да и настройка МК понятна и проста. Я использовал версию до выхода CodeVisionAVR версии 3.12. Она немного отличается в генерации кода с использованием Wizarda. Но, в основном, все то же самое. Далее все описано на примере работы с CodeVisionAVR версии 3.12. В интернете полно ссылок для изучения данной среды, например: изучение интегрированной среды разработки CodeVisionAVR .

Запускаем CVAVR. Создаем новый проект (New Project ). Программа предложит использовать мастер создания проекта.

Соглашаемся. Затем выбираем семейство контроллера.

Настраиваем порты ввода-вывода. Нужно сделать выходом бит 1 порта B (PB1) – с него снимается генерируемая частота. Порт D пока оставляем как есть. А выводы, с которых будет считываться состояние энкодера (PC3, PC4, PC5) настроить на вход (Data Direction: In ) и включить внутреннюю подтяжку к питанию (Pullup/Output Value – значение P ).

Переходим на вкладку Timers/Counters . Здесь нужно настроить 2 таймера: Timer0 и Timer1 , остальные таймеры оставляем выключенными (Clock Value: Stopped ).

Устанавливаем частоту Timer0 125 кГц. Данный таймер необходим для периодического опроса состояния энкодера. Опрос будет происходить каждый раз, как только таймер досчитает до верхнего значения. Поскольку Timer0 8-и разрядный, то верхнее значение у него 255. А чтобы контроллер прерывал выполнение основной программы для опроса энкодера, нужно включить прерывание по переполнению Timer0 (Overflow Interrupt ).

Настраиваем Timer1 . Нужно выбрать режим (Mode ) CTC (Clear Timer on Compare – Сброс при совпадении). В этом режиме выход таймера будет переключаться в лог. 0 как только содержимое счетного регистра TCNT1 совпадет с регистром OCR1A . За счет изменения значения в регистре OCR1A мы и будет изменять частоту выходных импульсов. В схеме используется выход А таймера 1. Для него нужно выбрать значение Toggle on Compare Match (переключиться в другое состояние при совпадении). В общем, смотрим картинку:

Следующий шаг – подключение дисплея. В CodeVisionAVR достаточно указать к какому порту МК будет подключен дисплей. Выбираем порт D.

Теперь нужно сгенерировать код программы. Нажимаем Program ->Generate, Save and Exit

Теперь нужно зайти в настройки Project -> Configure и проверить, что правильно заданы тип МК и его тактовая частота:

Готовый проект для CVAVR

(316,0 KiB, 670 hits)

Для прошивки МК нужен файл с расширением .hex . В готовом проекте это файл Gen_mega8.hex . Онрасположен в папке Release/Exe/.

Если есть желание написать программу с нуля, то в проекте есть комментарии, какие команды для чего нужны. Или можно просто вставить готовый код из файла gen_mega8.c. И, изменяя его, смотреть как это отражается на готовом устройстве. Для генерации файла прошивки МК нужно нажать кнопку Build the project. Файл с расширением .hex сгенерится в папку Release/Exe/.
Fuse-биты контроллера программируются на работу с внешним кварцевым резонатором 8 МГц в соответствии с рисунком:

Теперь об управлении генератором импульсов.

После подачи питания происходит инициализация дисплея и энкодера (настраиваются выводы, к которым подключен энкодер). Далее по дисплею пробегает полоса (необязательная “фишка”, была сделана для тренировки вывода на дисплей) и высвечивается надпись “Генератор выкл.”. Спустя 2 сек дисплей очищается. Частота на выходе появляется после вращения ручки энкодера, и изменяется на единицы Герц. При нажатии и удержании кнопки энкодера около 0.5 сек на экран выводится сообщение “Отпусти кнопку”. После этого вращением ручки энкодера частота меняется по десяткам Герц. Для изменения частоты на сотни (тысячи) Герц нужно еще раз (2 раза) нажать кнопку энкодера. Затем все снова начинается с единиц Герц.

Для увеличения нагрузочной способности генератора выход МК можно включить через транзистор.

О точности выходной частоты.

Значения выходной частоты проверялись осциллографом. На малых частотах, примерно до 200Гц, значения совпадают с измеренными на осциллографе, затем чем больше частота, тем больше погрешность (это получается из-за нецелых чисел, записываемых в регистр сравнения). Точность можно повысить, если в регистр сравнения заносить константы из массива (мне высокие частоты не нужны были, да и просто лень считать и заносить числа в массив)). На высоких частотах, чтобы повысить точность, нужно брать другую частоту таймера.

Недавно приобрел очень удобный и компактный мультиметр, которым можно померить частоту (до 9.999 МГц). Вот его видеообзор . А заказать можно по этой ссылке .

Микроконтроллер можно прошить специальным программатором либо сделать простой программатор самому. Например, я успешно использую программатор USBasp . Об этом программаторе можно почитать по

Пробник-генератор ТВ сигнала собран на основе микроконтроллере серии pic12f629, и по совокупности габаритов, потребления тока, стоимости изготовления прибора и функционалу для телемастера, просто незаменим. Напряжение питания 3 вольта, т.е. две пальчиковые батарейки. Ток потебления в режиме генерации 11 миллиампер, в режиме сна - всего 3 микроампера.

Принципиальная схема ТВ генератора сигнала

Рисунок печатной платы


Данный пробник умеет генерировать пять картинок, что вполне достаточно для проверки и ремонта строчной, кадровой развёрток телевизора, регулировки сведения и геометрических искажений растра, баланса цвета, контроля прохождения сигналов по цепям телевизора. При кратковременном нажатии на кнопку он просыпается и начинает генерировать первую картинку, при последующих нажатиях на неё картинки переключаютса по кругу. При длительном удержании кнопки, в момент отпускания генератор переходит в режим сна. Также в режим сна он переходит автоматически если он включен более 5 минут.


К статье прилогается архив, в котором есть схема, плата пробника, две прошивки . На видео видно, что у меня на телевизоре картинка слегка не линейна - это потому, что телевизору 12 лет, а может что-то в видеовходе не то. Предлагаемое устройство представляет собой генератор прямоугольных импульсов управляемый через последовательный порт с компьютера. Оно было сделано для решения конкретной задачи буквально за день и возможно содержит ошибки или недоделки, я не могу гарантировать что продавая его вы заработаете кучу денег. Но все основные функции были проверены.
Максимальная частота выдаваемая генератором немного больше 13 кГц, минимальная меньше 0,01 Гц (для частоты кварцевого генератора 4 МГц).

Схема.

Схема достаточно простая. Она собрана на основе микроконтроллера PIC16C63A, сигнал снимается с двух его выводов, их состояние всегда разное. Без нагрузки уровень единицы отличается от напряжения питания меньше чем на 0,1 вольт, уровень нуля тоже очень низкий. Выводы рассчитаны на ток до 30 мА. Микросхема МАХ232 используется для преобразования уровней интерфейса RS232 в уровни TTL. Для питания устройства нужен 5 вольтовый блок питания, на рисунке он не показан.

Программа.

Для установки параметров сигнала выдаваемого микроконтроллером необходимо использовать специальную программу. Программа написана для ОС Windows, ниже приведен вид ее окна.

Элементы управления предназначены для задания частоты выходного сигнала, отношения длин положительного и отрицательного полупериодов. Есть возможность ограничить количество выдаваемых импульсов (1...2 23 -1). Так как программа в микроконтроллере не позволяет выводить любую частоту, после нажатия на кнопку "Send" будет рассчитано ближайшее возможное значение частоты и оно запишется в поле частота вместо введенного с клавиатуры. Поля "Длительность 1" и "Длительность 0" содержат длительности сигнала в условных единицах с которыми работает программа в PICе, это целые числа больше нуля и меньше 2 24 . Предусмотрены настройки для выбора номера последовательного порта и частоты используемого кварцевого резонатора.

Источник: svv.on.ufanet.ru


C этой схемой также часто просматривают:
Предлагаемое устройство представляет собой генератор прямоугольных импульсов управляемый через последовательный порт с компьютера. Оно было сделано для решения конкретной задачи буквально за день и возможно содержит ошибки или недоделки, я не могу гарантировать что продавая его вы заработаете кучу денег. Но все основные функции были проверены.
Максимальная частота выдаваемая генератором немного больше 13 кГц, минимальная меньше 0,01 Гц (для частоты кварцевого генератора 4 МГц).

Схема.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Схема достаточно простая. Она собрана на основе микроконтроллера PIC16C63A, сигнал снимается с двух его выводов, их состояние всегда разное. Без нагрузки уровень единицы отличается от напряжения питания меньше чем на 0,1 вольт, уровень нуля тоже очень низкий. Выводы рассчитаны на ток до 30 мА. Микросхема МАХ232 используется для преобразования уровней интерфейса RS232 в уровни TTL. Для питания устройства нужен 5 вольтовый блок питания, на рисунке он не показан.

Программа.

Для установки параметров сигнала выдаваемого микроконтроллером необходимо использовать специальную программу. Программа написана для ОС Windows, ниже приведен вид ее окна.

Элементы управления предназначены для задания частоты выходного сигнала, отношения длин положительного и отрицательного полупериодов. Есть возможность ограничить количество выдаваемых импульсов (1...2 23 -1). Так как программа в микроконтроллере не позволяет выводить любую частоту, после нажатия на кнопку "Send" будет рассчитано ближайшее возможное значение частоты и оно запишется в поле частота вместо введенного с клавиатуры. Поля "Длительность 1" и "Длительность 0" содержат длительности сигнала в условных единицах с которыми работает программа в PICе, это целые числа больше нуля и меньше 2 24 . Предусмотрены настройки для выбора номера последовательного порта и частоты используемого кварцевого резонатора.

Этот проект - качественный и универсальный функциональный генератор, который несмотря на некоторую сложность схемы, по крайней мере в сравнении с более простыми , обладает очень широким функционалом, что оправдывает затраты на его сборку. Он способен выдавать 9 различных форм сигналов, а также работать с синхронизацией импульсов.

Принципиальная схема генератора на МК

Параметры устройства

  • Частотный диапазон: 10 Гц - 60 кГц
  • Цифровая регулировка частоты с 3 различными шагами
  • Формы сигнала: Sine, Triangle, Square, Saw, H-pulse, L-pulse, Burst, Sweep, Noise
  • Выходной диапазон: 15 В для синуса и треугольника, 0-5 В для других режимов
  • Имеется выход для синхронизации импульсов

Питание прибора осуществляется от 12 вольт переменки, что обеспечивает достаточно высокое (свыше 18 В) напряжение постоянного тока, необходимое для нормальной эксплуатации 78L15 и 79L15, формирующих двухполярку по 15 В. Это делается для того, чтобы микросхема LF353 могла вывести полный диапазон сигналов на нагрузке 1 кОм.

Регулятор уровня использован ALPS SRBM1L0800. В схеме следует использовать резисторы с погрешностью ±1% допуска или лучше. Ограничители тока светодиодов - резисторы 4306R серии. Яркость может быть увеличена в зависимости от предпочтений исполнителя. Генератор собран в пластиковом корпусе 178x154x36 мм с алюминиевой передней и задней панелями.

Многие контактные компоненты монтируются на передней и задней панелях (кнопки, ручки, разъемы RCA, светодиодные сборки, разъем питания). Печатные платы крепятся к корпусу болтами с пластиковыми прокладками. Все остальные элементы генератора смонтированы на печатных платах - блок питания отдельно. Левая кнопка по середине для изменения режима, правая - для выбора частоты режима.

Генератор вырабатывает различные сигналы и работает в трех режимах, которые выбираются с помощью клавиши "Select" и указываются тремя верхними (на схеме) светодиодами. Поворотный регулятор изменяет параметры сигнала в соответствии со следующей таблицей:

Сразу после настройки в режиме 1 идёт генерация синуса. Однако, начальная частота довольно низкая и по крайней мере один щелчок энкодера необходим, чтобы увеличить его. На плате есть контакт подключения прибора для программирования, что позволяет оперативно изменять функциональность генератора сигналов, если необходимо. Все файлы проекта - прошивки PIC16F870, рисунки плат, находятся

Вам также будет интересно:

Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса
Коллекторные двигатели постоянного тока получили широкое распространение за счет своей...
Когда и в какое время включать ближний и дальний свет, противотуманные фары и дневные ходовые огни?
Несколько лет назад в правила дорожного движения и техрегламент были внесены особые...
Антенны из пивных баночек
Эти баночные антенны в основном хвалят. Вот и я решил проверить, какой реальный диапазон...
Муфта продольно-свертная Размеры канавок валов
под фиксирующие полукольца и крепежные изделия
Элементы приводов, ременных и цепных передач - Муфты - Жесткие соединительные муфты -...
Необслуживаемый регенерационный пункт НРП-К12 Какую функцию выполняет ДП
Необслуживаемые усилительные и регенерационные пункты (НУП и НРП) являются составными...