Автомобильный - Mirtaxibel

Характеристика светодиодных ламп для авто ближнего и дальнего света H4 Диодные автолампы h4

Зажигание мотоцикла, какие системы бывают — всё о них Что такое магнето?

Смазка для подшипников какая лучше?

Группы базовых масел American Petroleum Institute Конкурентные преимущества Liqui Moly в секторе специальных масел

«Везет» (такси): отзывы водителей и пассажиров

Схема индикатора заряда аккумулятора на светодиодах

Cпособы регулирования скорости вращения асинхронного двигателя

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Стробоскоп для выставления зажигания своими руками Стробоскоп автомобильный для зажигания своими руками

Кто придумал Паровой двигатель - Когда Изобрели?

Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса

Когда и в какое время включать ближний и дальний свет, противотуманные фары и дневные ходовые огни?

Как подключить реле к микроконтроллеру. Схема управления реле Схема блока питания

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). ...

Продолжаем рассказ о подключении мощной нагрузки к микроконтроллеру. Мы уже знаем, как подключить к микроконтроллеру и . Теперь пришла очередь разобраться с электромагнитным реле.

На первый взгляд подключение реле - самое простое. Однако это обманчивая простота. Потому что, во-первых, большинство реле потребляют ток значительно больший, чем может обеспечить на выходе микроконтроллер. А во-вторых, электромагнитное реле - это индуктивная нагрузка, которая имеет свои особенности (об этом дальше). Именно поэтому новички нередко выводят выходы микроконтроллера из строя, пытаясь подключить к ним реле.

Как подключить реле к микроконтроллеру и избежать при этом неприятностей - чуть позже. А пока для самых-самых начинающих очень коротко расскажу

Электромагнитное реле - это специальное устройство, которое состоит, как минимум, из четырёх основных элементов (см. рис.):

  1. Катушка
  2. Сердечник
  3. Якорь
  4. Группа контактов

Катушка (в зависимости от вида реле) может быть рассчитана либо на переменное напряжение, либо на постоянное.

Когда на катушку подаётся напряжение, то вокруг неё создаётся магнитное поле, которое намагничивает сердечник. Тогда якорь притягивается к сердечнику и сдвигает группу контактов. В зависимости от конструкции контакты либо размыкаются, либо замыкаются, либо переключаются. В группе контактов могут быть как нормально замкнутые, так и нормально разомкнутые контакты. И контактов может быть и два, и три и более.

Когда напряжение с катушки снимается, то и контакты возвращаются в исходное положение.

Нормально замкнутый (нормально закрытый) контакт - это контакт, который замкнут при отсутствии напряжения на катушке. Нормально размокнутый (нормально открытый), соответственно, разомкнут, когда напряжения на катушке нет, и замыкается, когда напряжение на катушку подаётся. На рисунке показан нормально разомкнутый контакт.

На схемах и в описаниях реле обычно используются сокращения: НО - нормально открытый (нормально разомкнутый), НЗ - нормально закрытый (нормально замкнутый).

Основные характеристики реле

Чтобы использовать реле в своих устройствах (не обязательно на микроконтроллерах), вам нужно знать, подойдёт оно для ваших целей или нет. Для этого надо знать характеристики реле. Основные характеристики:

  1. Вид напряжения катушки (переменное или постоянное). Для подключения непосредственно к микроконтроллеру либо через транзистор можно использовать только реле постоянного тока (контакты реле, разумеется, могут управлять и переменным, и постоянным током).
  2. Напряжение катушки (то есть какое напряжение надо подать на катушку, чтобы якорь надёжно примагнитился к сердечнику).
  3. Ток потребления катушки.
  4. Номинальный ток контактов (то есть ток через контакты реле, при котором они будут работать без повреждения в течение длительного времени).
  5. Время срабатывания реле. То есть сколько времени требуется на примагничивание якоря.
  6. Время отпускания реле. То есть сколько времени требуется для отмагничивания (отпускания) якоря.

Последние два параметра обычно не принимаются во внимание. Однако в тех случаях, когда требуется определённое быстродействие (например, срабатывание каких-то устройств защиты), то эти значения надо учитывать.

Ну вот наконец мы добрались до подключения нагрузки к микроконтроллеру через реле. Предлагаю вспомнить . Если вы помните, то подключить нагрузку к выходу микроконтроллера можно двумя способами: с общим плюсом и с общим минусом.

Если мы хотим подключить реле к микроконтроллеру напрямую, то способ с общим минусом, скорее всего, отпадает, потому что при таком способе микроконтроллер способен управлять очень слабой нагрузкой. А почти все реле потребляют несколько десятков или даже сотен мА.

Да и способ с общим минусом тоже в большинстве случаев не позволит подключить реле напрямую к микроконтроллеру по той же причине (при таком способе микроконтроллер обычно может обеспечить на выходе 15-20 мА, что будет недостаточно для большинства реле).

Малым током потребления обычно обладают герконовые реле. Однако они и коммутировать могут только небольшие токи.

Но тут есть одна хитрость. Дело в том, что чем выше напряжение катушки реле, тем меньше ток потребления. Поэтому, если в вашем устройстве есть источник питания, например, на 24 В и выше, то вы вполне сможете подобрать реле с приемлемым током потребления.

Например, реле Finder 32-й серии при напряжении катушки 24В потребляет всего 8,3 мА.

В этом случае (когда у вас есть два источника напряжения) подключить реле можно примерно так:

Как подключить реле к транзистору

Однако использовать дополнительный источник питания в устройстве в большинстве с лучаев возможности нет. Поэтому обычно реле подключают к выходу микроконтроллера . Как это делать, я уже рассказывал. Поэтому повторяться не буду.

Меры безопасности

Реле обычно используют, когда требуется управлять мощной нагрузкой и/или высоким напряжением.

Поэтому здесь надо помнить о мерах безопасности. Желательно разделять слаботочную низковольтную цепь и цепь высокого напряжения. Например, устанавливать реле в отдельном корпусе или в отдельном изолированном отсеке корпуса, чтобы при наладке устройства случайно не коснуться контактов с высоким напряжением.

Кроме того есть опасность вывести из строя выход микроконтроллера или дополнительный транзистор.

Дело в том, что катушка реле - это индуктивная нагрузка со всеми вытекающими из этого последствиями.

И здесь есть два риска:

  1. В момент подачи напряжения на катушку индуктивное сопротивление катушки равно нулю, поэтому будет кратковременный бросок тока, значительно превышающий номинальный ток. Но большинство выходных транзисторов этот бросок выдерживают, так что об этом можно не думать, но знать и понимать это надо.
  2. В момент снятия напряжения (в момент разрыва цепи питания катушки) возникает ЭДС самоиндкуции, которая может вывести из строя выходной транзистор микроконтроллера и/или дополнительный транзистор, к которому подключена катушка реле. Чтобы избежать этого, всегда необходимо параллельно с катушкой включать защитный диод (см. рис.). Почему так происходит, рассказывать не буду. Кому интересно, вспоминайте или изучайте электротехнику .

ВАЖНО!
Обратите внимание на включение диода. Он должен включаться именно так, а не наоборот, как думают некоторые.


В данной статье рассказывается как микроконтроллер может управлять внешней нагрузкой при помощи электромагнитного реле.

При конструировании устройств на микроконтроллерах часто возникает необходимость управления различными внешними устройствами посредством включения и выключения напряжения питания. Причем напряжение питания и ток потребления таких устройств могут меняться в самых широких пределах. Универсальным способом управления подобными устройствами является электромагнитное реле. В настоящее время в продаже появились малогабаритные реле с довольно не плохими параметрами. Сегодня реле могут коммутировать нагрузку в цепи до 220 вольт при токе до 10 ампер и выше. Обмотка реле обычно расчитана на напряжение 12В и потребляет ток всего 40 мА. Это позволяет использовать для его управления ключ на маломощном транзисторе. Например на широко распространенном КТ315. Можно взять импортный BC547. Схема подключения реле к микроконтроллеру приведена на следующем рисунке:

Схема подключения реле

Для того, что бы включить нагрузку микроконтроллер выставляет на своем выходе (в данном случае на выходе PB4) сигнал логической единицы. Напряжение через резистор R1 поступает на базу транзистора. Танзистор открывается и реле срабатывает. Его контакты замыкают цепь нагрузки. Для отключения нагрузки микроконтроллер выставляет на своем выходе сигнал логического нуля. На базе VT1 напряжения снижается до нуля. Транзистор закрывается и реле отключается. Диод VD1 служит для защиты схемы от напряжения самоиндукции, которое возникает в обмотке реле при снятии с нее напряжения. Резистор R2 нужен для более надежного закрывания транзистора VT1.

В то время, как микроконтроллер питаетя от стабилизированного источника +5В, ключ и реле получает питание от нестабилизированного напряжения +12В. Это напряжение снимается с того же выпрямителя но до стабилизатора. Подробнее смотрите в статье "Схема блока питания".

В этой статье рассматривается схема стабилизированного блока питания, которая может использоваться для питания простого микропроцессорного устройства.

Как известно, для питания цифровых микросхем необходимо стабилизированное напряжения 5В. Заметим, что современные микроконтроллеры способны работать в широком диапазоне питающих напряжений. Обычно от 3 до 6 вольт. Главное требование, что бы напряжение было стабилизированное. То есть не менялось при изменении нагрузки. Однако, обычно любое микропроцессорное устройство кроме cамого микроконтроллера содержит ряд других микросхем, которые обычно более требовательны к напряжению питания. Поэтому правильнее всего, если нет каких нибудь специальных причин, выбирать напряжение питания +5В. Такое напряжение питания широко используется в электронной технике. Поэтому промышленность давно уже наладила производство специальных микросхем - стабилизаторов напряжения. Для большинства применений подойдет микросхема 7905 или ее отечественный аналог КРЕН5. Ниже на рисунке приведена схема блока питания, который расчитан на питание практически любого устройства на микроконтроллерах.

Схема блока питания

Трансформатор T1 понижает сетевое напряжение до требуемой величины (примерно 8...9 вольт). Выпрямитель VD1 выпрямляет его. Предварительный фильтр C1 сглаживает пульсации выпрямленного напряжения и в результате на вход стабилизатора DA1 поступает постоянное нестабилизированное напряжение примерно равное 12 В. С выхода стабилизатора стабилизированное напряжение 5В поступает на выход (на питание цифровых цепей микроконтроллерного устройства. Нестабилизированное напряжение +12В так же поступает для питания некоторых цепей микроконтроллерного устройства. Обычно это силовые цепи, не требующие стабилизации напряжения: светодиоды, реле и т.п. Подключение таких цепей до стабилизатора существенно разгружает микросхему DA1 облегчает ее тепловой режим, повышает надежность и увеличивает КПД. Дополнительный фильтр С2, С3 служит для подавления помех по питанию. Причем электролит C3 служит для подавления низкочастотных помех, а керамический конденсатор C2 подавляет высочастотные помехи.

Кроме собственно цепей питания приведенная схема содержит специальные цепи, позволяющие получать сигнал, синхронный с частотой сетевого напряжения. Такой сигнал может подаваться на компаратор, входящий в состав многих микроконтроллеров и позволяет реализовать алгоритмы управления тиристорными либо оптодинисторными ключами для плавной регулировки мощности на нагрузке. В таких алгоритмах процессор отсчитывает необходимую задержку от начала текущего полупериода сетевого напряжения и по истечении этой задержки включает тиристор. В конце полупериода, когда мгновенное напряженияе переходит через ноль, тиристор закрывается и микроконтроллер отсчитывает очередную задержку. Изменяя время задержки можно изменять длительность импульсов, поступающих на нагрузку и тем самым изменять мощность, отдаваемую в эту нагрузку.

В этой статье рассказывается, как подключать индикаторы на одиночных светодиодах к микроконтроллеру.

Ни одно устройство на основе микроконтроллера не обходится без световых индикаторов. В качестве одиночных светоизлучателей удобнее всего использовать светодиоды. Современные микроконтроллеры (в частности микроконтроллеры серии AVR) имеют достаточно мощные выходные схемы. Они рассчитаны на выходной ток до 40 мА. Этого вполне достаточно для непосредственного подключения одного маломощного светодиода. На следующем рисунке показано, как можно подключить светодиод к выходу микроконтроллеру.

Непосредственное подключение светодиода

Простой маломощный светодиодный индикатор - это самый распространенный способ индицирования. Именно такие индикаторы мы видим на подавляющем большинстве конструкций. Однако, иногда к микроконтроллеру необходимо подключить более мощные светодиоды. Это светодиоды повышенной яркости свечения или светодиоды большой площади излучения. В том случае, когда ток потребления светодиода превышает 40 мА, применяется электронный ключ на транзисторе. Ниже приводится схема подобного подключения.

Подключение при помощи электронного ключа

При использовании транзистора КТ315 можно подключать светодиод с током потребления до 100 мА. Если нужно подключить светодиод с еще большим током потребления, то необходимо подобрать другой, более мощный транзистор.

В данной статье освещаются вопросы подключения к микроконтроллеру различных кнопок и клавиш.

Практически ни одна микропроцессорная система не обходится без кнопок, клавиш, концевых контактов и тому подобных элементов коммутации. Любое подобное коммутационное устройство - это просто пара контактов, которые замыкаются при нажатии на клавишу (кнопку) или при другом механическом воздействии. Например, при срабатывании концевого выключателя управляемого механизма. Поэтому подключение любого вышеописанного устройства сводится к подключению к микроконтроллеру пары контактов. Микроконтроллеры серии AVR довольно неплохо приспособлены для работы именно с кнопками. Каждый из выводов каждого порта имеет специальные средства, облегчающие подключение внешних контактов.

На рисунке 1 показан типовой способ подключение пары контактов к порту микроконтроллера. Рассмотрим подробнее принцип работы этой схемы. Но прежде мы должны вспомнить, что любой из выводов любого порта может работать в одном из двух режимов: либо как вход, либо как выход. Естественно, в нашем случае соответствующий вывод должен быть переведен в режим входа. В этом режиме имеется возможность программным путем при необходимости подключать к любой внешней линии внутренний резистор нагрузки. На рисунке 1 этот резистор обозначен R. Этот резистор специально введен для того, что бы работать с внешними контактами. При создании программы для всех входов, к которым подключены контакты, не забудьте предусмотреть команды, включающие этот резистор. Если же вход предназначен для других целей, то скорее всего резистор необходимо отключить. Электронный ключ, который программно включает и отключает внутренний резистор нагрузки условно показан на рисунке 1 и обозначен как K.

И так, вывод порта запрограммирован как вход, внутренний резистор нагрузки включен. Если внешние контакты K1 разомкнуты, то на входе присутствует напряжение, близкое к напряжению питания, которое поступает через резистор R. При считывании информации из порта в данном разряде будет логическая единица. Если же контакты замкнуть, то линия порта будет замкнута на общий провод. Напряжение на входе станет равным нулю. При считывании информации в данном разряде порта появится ноль. Таким образом считывая информацию из порта и анализируя значение соответствующего разряда микроконтроллер всегда может определить, замкнуты контакты или нет. Если разряд равен нулю - контакты замкнуты, единице - разомкнуты.

Указанным выше образом можно подключить отдельную пару контактов при желании ко всем выводам всех портов. Однако такой подход не назовешь рациональным. Кроме клавиш к портам микроконтроллера должны подключаться и другие устройства: индикаторы, реле, датчики, последовательные каналы связи и многое другое. Поэтому, для экономии выводов и для упрощения схемы применяют матрицы клавиш. Схема типичной матрицы из 16 клавиш приведена на рисунке 2.

Для подключения матрицы используется весь порт PB микроконтроллера и еще две линии порта PD. Как видно из схемы каждый из выводов порта PB подключен сразу к двум кнопкам. Например, вывод PB0 подключен к кнопке S1 и S9. Вывод PB1 к S2 и S10 и так далее. Второй контакт каждой кнопки подключен к одной из линий PD5 или PD6. В результате образуется матрица. Она напоминает решетку. Два вертикальных провода и восемь горизонтальных. В каждом пересечении этих проводов вставлено по кнопке.

Как же работает эта матрица. Для правильной работы необходимо все выводы порта PB перевести в режим входов и включить для каждого из этих входов внутренний нагрузочный резистор. А два вывода порта PD (PD5 и PD6) нужно перевести в режим выходов. Для того, что бы считать состояние кнопок микроконтроллер должен сначала подать на выход PD6 сигнал логического нуля, а на выход PD5 сигнал логической единицы. Затем он должен прочитать байт из порта PB. Этот байт будет содержать информацию о состоянии кнопок S1...S8. Каждый бит будет отвечать за свою кнопку. Нулевой бит (PB0) за кнопку S1, первый бит (PB1) за кнопку S2 и т.д. Если кнопка нажата, то в соответствующем разряде будет ноль, если не нажата - единица. После анализа нажатия первой половины кнопок, микроконтроллер должен установить на выходе PD5 логический ноль, а на выходе PD6 - единицу. И опять считать байт из порта PB. Теперь этот байт будет содержать информацию о состоянии кнопок S9...S16. Опрашивая таким образом то первую то вторую половину кнопок, микроконтроллер может реагировать на нажатие каждой из кнопок отдельно.

Описанная выше матрица может быть легко расширена. Можно взять не две вертикальные линии, а три, четыре и так далее. Для данного микроконтроллера максимально возможная матрица имеет размеры 7X8. Так как порт PD имеет лишь семь линий. Общее количество кнопок при этом будет равно 56.

О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй - везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется I c , в наших I к. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде:) Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:

Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.

Берем транзистор и подключаем его по такой схеме:

Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.

Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления h fe .
h fe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.

Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет I c =I be *h fe =0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.

Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.

Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.

Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.

Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:

При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.

Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!

В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.

Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.

Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.

Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.

Многие радиолюбители, которые занимаются конструированием схем на микроконтроллерах, сталкиваются с проблемой нехватки выводов у оных. Поэтому приходится изыскивать пути решения этого вопроса путем возложения на один вывод контроллера нескольких функций.

Эта тема уже затрагивалась в статье . Схема нового варианта управления нагрузкой двумя реле и использованием так же одного вывода микроконтроллера показана на рисунке ниже.

Работа схемы

Начнем с программы инициализации контроллера. Вывод GP0 должен быть сконфигурирован на вход. При этом он будет иметь высокоимпедансное состояние. Еще такое состояние вывода называют третьим состоянием. Можно представить, что вывод 7 DD1 висит в воздухе и на состояние оптронов не оказывает никакого влияния. По последовательной цепи управления, состоящей из стабилитрона VD1, резистора R1, светодиодов оптронов U1 и U2, резистора R2 и еще одного стабилитрона VD2, в таком состоянии ток протекать не будет. Потому что суммарное пробивное напряжение стабилитронов (3В+3В=6В), имеющих напряжение стабилизации 3 вольта, больше, чем напряжение, приложенное к этой цепи 5 вольт.

Для включения реле Р1 необходимо в программе микроконтроллера вывод GP0 сконфигурировать на выход и оставить его в нулевом состоянии. Таким образом, напряжение питания 5 вольт будет приложено к верхней половине вышеупомянутой цепи. В данной ситуации пяти вольт уже хватает, чтобы открылся стабилитрон VD1 и через светодиод оптрона U1 стал протекать открывающий его транзистор ток. При величине резистора, указанной на схеме 130 Ом, через светодиод оптрона протекал ток, примерно 5 мА. Для большинства оптронов этого вполне достаточно для полного открывания его транзистора. Через открытый транзистор оптрона и резистор R3 начнет подаваться напряжение на базу транзистора VT1, это приведет к его открыванию и соответственно к срабатыванию реле Р1. Что будут коммутировать реле, думать вам. Для выключения реле следует перевести вывод контроллера опять в третье состояние. Для включения реле Р2 необходимо так же перевести вывод микроконтроллера GP0 в состояние вывода информации и сформировать на нем логическую «1». Теперь транзистор выходного буфера контроллера закоротит верхнюю половину цепи управления, и напряжение питания +5 вольт будет подано на нижнюю половину цепи управления. Далее сработает оптрон U2, а за ним транзистор VT2 с реле Р2. Для выключения реле опять следует перевести вывод контроллера опять в третье состояние.

Тип транзисторов примененных в схеме зависит от выдранного вами реле. По крайней мере, ток коллектора должен быть раза в два… три больше рабочего тока реле. Микросхема DA1 может быть любым подходящим стабилизатором напряжения на пять вольт.

Многие начинающие радиолюбители начинают знакомится с электроникой с простых схем, которых полно в интернете. Но если это устройство управления, в котором к схеме подключается какой-то исполнительный механизм, а в схеме способ подключения не указан, то тогда новичку приходится туго. Данная статья была написана с целью помощи начинающим радиолюбителям разобраться с этой проблемой.

Нагрузки постоянного тока.

Первый способ - подключение через резистор

Самый простой способ - подходит для несильноточных нагрузок - светодиодов.

Rгас = (U/ I) – Rн

Где U - напряжение питания(в Вольтах), I - допустимый ток через схему(в Амперах), Rн - сопротивление нагрузки(в Омах)

Второй способ - Биполярный транзистор

Если потребляемый ток нагрузки больше, чем максимальный отдаваемый ток Вашего устройства, то резистор тут не поможет. Нужно увеличить ток. Для этого обычно испоьзуют транзисторы.

В данной схеме применен n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание Вашего устройства. Резистор R1 нужен для ограничения тока, протекающего через транзистор, обычно ставится на 1-10 кОм.

Третий способ - полевой транзистор

Для управления нагрузкой, ток которой составляет десятки ампер(особо мощные электродвигатели, лампы и тд) применяется полевой транзистор.

Резистор R1 ограничивает ток через затвор. Так как полевой транзистор управляется малыми токами и если выход Вашего устройства, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения выход устройства «прижимается» к земле резистором 10кОм.
У полевого транзистора есть особенность - его медлительность. При превышении допустимой частоты он станет перегреватся.

Переменный ток.

Первый способ - реле.

Самым простым способом управления нагрузкой переменного тока является реле. Реле, само по себе является сильноточной нагрузкой - нужно включать через биполярный или полевой транзистор.

Недостатки реле - его медлительность и механический износ деталей.

Вам также будет интересно:

Антенны из пивных баночек
Эти баночные антенны в основном хвалят. Вот и я решил проверить, какой реальный диапазон...
Муфта продольно-свертная Размеры канавок валов
под фиксирующие полукольца и крепежные изделия
Элементы приводов, ременных и цепных передач - Муфты - Жесткие соединительные муфты -...
Необслуживаемый регенерационный пункт НРП-К12 Какую функцию выполняет ДП
Необслуживаемые усилительные и регенерационные пункты (НУП и НРП) являются составными...
Автомасла и все, что нужно знать о моторных маслах Если мало масла в коробке ваз 2107
Долговечность и надежность всех узлов и агрегатов машины зависит от качества их смазки, в...
Какие могут быть последствия
Замена ГРМ Renault Logan 1.6 л. (8 клапанов) несложная процедура, однако кое какие...