Автомобильный - Mirtaxibel

Автомасла и все, что нужно знать о моторных маслах Если мало масла в коробке ваз 2107

Какие могут быть последствия

Характеристика светодиодных ламп для авто ближнего и дальнего света H4 Диодные автолампы h4

Зажигание мотоцикла, какие системы бывают — всё о них Что такое магнето?

Смазка для подшипников какая лучше?

Группы базовых масел American Petroleum Institute Конкурентные преимущества Liqui Moly в секторе специальных масел

«Везет» (такси): отзывы водителей и пассажиров

Схема индикатора заряда аккумулятора на светодиодах

Cпособы регулирования скорости вращения асинхронного двигателя

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Куда звонить и что делать при ДТП?

Как вызвать ГАИ при ДТП: что делать и куда звонить

Схема. Модуль мощного стабилизатора напряжения на полевом транзисторе

Эта схема стабилизирует ток через один или несколько светодиодов, причём практически независимо от напряжения питания. Её главным преимуществом является очень малое падение напряжения, которое может быть меньше 100 мВ. Конструкция может найти применение в светодиодных лентах, где напряжение может изменяться по длине за счет резистивного падения, и небольшие изменения напряжения приводят к существенным изменениям тока и яркости. А также в , где каждый вольт на счету.

Схема стабилизатора тока светодиодов

Падение напряжения в цепи резистора R не превышает 40 мВ. Остальное зависит от параметров Q3.

Номинальный ток светодиода здесь составляет 7,2 мА при 9 В. Увеличение напряжения до 20 В вызывает изменение тока всего +15%, благодаря динамическому сопротивлению.

Значение резистора R1 выбрано для синего/белого светодиода с падением напряжения в диапазоне 2,9 - 3,4 вольта. Для поддержания нужного уровня на другой вольтаж падения напряжения - измените значение R1 пропорционально изменению падения напряжения.

Ток через светодиоды обратно пропорционален значению R. Ток может быть грубо изменен с помощью этого резистора, и точно настроен путем изменения R1.

Для получения хорошей термостабильности, Q1 и Q2 должны быть в тепловом контакте. В идеале, они должны быть на одном кристалле, но и так получаются хорошие результаты, когда они прижаты друг к другу.

Схема хорошо работает не только с одним светодиодом. Максимальное количество светодиодов в линии зависит только от параметров компонентов схемы.

Увеличить срок службы комплекта батарей или заряда аккумулятора, просто добавив в схему линейные стабилизаторы напряжения? Увеличить стабильность напряжения и уменьшить пульсации после импульсного преобразователя практически без снижения КПД блока питания? Это реально, если использовать современные микромощные LDO-стабилизаторы от STMicroelectronics с малым падением напряжения производства.

Продолжительное время разработчикам электронной аппаратуры были доступны только классические стабилизаторы (например, или стабилизаторы серий 78xx/79xx) с минимальным падением на регулирующем элементе от 0,8 В и выше. Связано это было с тем, что в качестве регулирующего элемента применялся n-p-n-транзистор, включенный по схеме с общим коллектором. Для того, чтобы открыть такой транзистор до насыщения, необходим дополнительный источник питания, напряжение которого превышает входное напряжение. Однако развитие технологий не стоит на месте, и с появлением мощных и компактных p-канальных полевых транзисторов их тоже начали использовать в стабилизаторах напряжения, включая по схеме с общим истоком. Такая схема позволяет при необходимости полностью открыть транзистор, и падение напряжения на его переходе фактически будет зависить только от сопротивления канала и тока нагрузки. Так появился стабилизатор LDO (Low DropOut).

Следует учитывать, что минимальное падение на канале транзистора LDO-стабилизатора практически линейно зависит от протекающего через него тока, так как канал фактически является электрически регулируемым резистором с некоторым минимальным сопротивлением. Поэтому при уменьшении выходного тока это напряжение тоже пропорционально уменьшается до некоторого предела, обычно равного 10…50 мВ. Лидерами же следует признать микросхемы и , у которых минимальное падение напряжения составляет всего 0,4 мВ. Если падение напряжения – одно из ключевых требований к стабилизатору, то следует присмотреться к стабилизаторам с большим запасом по току, так как у них из-за меньшего сопротивления канала регулирующего транзистора может быть гораздо меньшее падение напряжения на том же токе нагрузки.

Уникальная возможность LDO – его способность практически без ухудшения суммарного КПД блока питания стабилизировать напряжение, сглаживать выбросы и уменьшать шум на шине питания для высокочувствительных устройств, таких как радиоприемники, модули GPS, аудиоустройства, АЦП высокого разрешения, генераторы VCO, . Например, для питания схемы напряжением 3,3 В мы выбрали LDO с минимальным падением 150 мВ и понижающий импульсный стабилизатор с пульсациями на выходе амплитудой 50 мВ (верхняя кривая на рисунке 1). Выходное напряжение импульсного стабилизатора можно приблизительно оценить по формуле:

U Имп ≥ U Нагр. + U Drop + 1/2∆U Имп + 100…200 мВ,

где U Имп – выходное напряжение импульсного стабилизатора, U Нагр. – выходное напряжение линейного стабилизатора (напряжение питания нагрузки), ∆U Имп – амплитуда пульсаций напряжения на выходе импульсного стабилизатора. Поэтому выберем его равным 3,6 В. В итоге КПД ухудшится всего на 8%, однако при этом значительно уменьшатся пульсации напряжения. Коэффициент подавления пульсаций напряжения питания (SVR) определяется по формуле:

SVR = 20Log*(∆U IN /∆U OUT)

При типовом коэффициенте порядка 50 дБ пульсации ослабляются примерно в 330 раз. То есть амплитуда пульсаций на выходе нашего источника питания уменьшится до сотен микровольт (нужно еще учитывать шум самого LDO, обычно он составляет десятки мкВ/В) – такой результат практически недостижим для большинства импульсных преобразователей без дополнительного стабилизатора или многозвенных LC-фильтров на выходе. Наилучшие характеристики стабилизации обеспечивают микросхемы , и микросхемы серии LD39xxx – у шум не превышает 10 мкВ/В, а коэффициент SVR доходит до 90 дБ.

Однако у LDO тоже есть недостатки, один из которых – склонность к самовозбуждению, причем не только при слишком большом ESR выходного конденсатора (или его слишком маленькой емкости), но и при слишком низком ESR. Связана эта особенность с тем, что каскад с общим эмиттером (общим истоком) имеет высокий выходной импеданс, поэтому на частотной характеристике стабилизатора появляется дополнительный низкочастотный полюс (его частота зависит от сопротивления нагрузки и емкости выходного конденсатора). В итоге уже на частотах в десятки килогерц сдвиг фазы может превысить 180° и отрицательная обратная связь превращается в положительную . Для решения такой проблемы в частотную характеристику необходимо добавить нуль, и простейший способ сделать это – увеличить последовательное сопротивление (ESR) выходного конденсатора: это практически не увеличивает пульсации выходного напряжения, но является залогом стабильности всей схемы. Причем емкость и ESR конденсатора должны быть в строго очерченных пределах. Они указываются индивидуально для каждого LDO-стабилизатора. Увы, но стандартный подход «чем больше емкость и чем ниже ESR выходных конденсаторов – тем лучше», применимый к классическим линейным и импульсным стабилизаторам, здесь не работает.

В зависимости от компонентов внутренней корректирующей схемы, LDO-стабилизаторы можно условно разделить на три группы:

  • стабилизаторы, рассчитанные на работу с танталовыми или электролитическими конденсаторами – им требуется конденсатор с ESR 0,5…10 Ом и более;
  • стабилизаторы, рассчитанные на работу с танталовыми конденсаторами (ESR 0,3…5 Ом);
  • стабилизаторы, рассчитанные на работу с керамическими конденсаторами – они сохраняют стабильность при ESR выходного конденсатора от 0,005 до 1 Ом.

Для высокочастотных и/или сильноточных цифровых схем рекомендуется ставить фильтрующие керамические конденсаторы емкостью 0,1…1 мкФ возле каждой микросхемы, и они тоже могут нарушить стабильность LDO-стабилизатора. Чтобы этого не происходило, рекомендуется увеличивать длину и уменьшать толщину дорожек от стабилизатора до нагрузки (тем самым увеличивать индуктивность дорожек), ставить в разрыв цепи питания дроссели или резисторы, а также выбирать LDO-стабилизаторы, скомпенсированные под низкий ESR нагрузки .

Есть еще один способ увеличить стабильность преобразователя – использовать в качестве регулирующего n-канальный транзистор, включенный по схеме с общим стоком. Такая схема стабильна практически при любых характеристиках выходного конденсатора, и даже вообще без конденсатора (так называемые capless-стабилизаторы). Однако для ее корректной работы необходим внутренний умножитель напряжения, который будет повышать входное напряжение для возможности отпирания регулирующего транзистора до насыщения. По такой схеме изготовлен – благодаря более низкому сопротивлению канала n-канальных транзисторов той же площади удалось значительно снизить падение напряжения, однако из-за постоянно работающего умножителя резко возрос потребляемый микросхемой ток в активном режиме. Но, по мнению автора, за такими стабилизаторами – будущее LDO, поэтому проблема повышенного энергопотребления наверняка скоро решится.

Из-за значительной емкости затвора ухудшается способность транзистора быстро реагировать на резкие изменения тока нагрузки. В итоге, при уменьшении тока нагрузки выходное напряжение стабилизатора по инерции повышается (до тех пор, пока встроенный операционный усилитель не сможет чуть закрыть транзистор), а при увеличении тока – выходное напряжение слегка проседает (нижняя кривая на рисунке 1). Увеличить нагрузочную способность стабилизатора можно посредством увеличения мощности выхода встроенного операционного усилителя, однако вслед за этим увеличивается потребляемый стабилизатором ток. Поэтому разработчику приходится выбирать: или использовать в схеме сверхмаломощные стабилизаторы (например, серий или с потребляемым током в единицы микроампер, но с очень высокой инерционностью и большими просадками напряжения при резких изменениях тока нагрузки), или стабилизаторы среднего и высокого быстродействия, но с потреблением до сотен микроампер. В качестве альтернативы существуют стабилизаторы с режимами экономии энергии (например, ), которые при уменьшении тока нагрузки автоматически переключаются в микромощный режим. Аналогично работают многие современные микроконтроллеры (например, семейств STM8 и STM32) – у последних имеется два встроенных LDO-стабилизатора, один из которых работает в микромощном, а второй – в активном режиме, что обеспечивает высокую энергоэффективность во всех режимах работы и во всем диапазоне напряжения питания.

Все рассмотренные в этой статье стабилизаторы для своей работы требуют минимум внешних компонентов – всего два конденсатора, причем входной конденсатор емкостью минимум 1 мкф обязателен для большинства микросхем, и только для регулируемых версий еще необходим делитель из двух резисторов (рисунок 2). Все микросхемы имеют защиту от перегрузки и перегрева, способны работать в диапазоне температур -40…125°С. Многие микросхемы имеют вход включения Enable: потребляемый ток в режиме «Выключено» обычно не превышает единиц…сотен наноампер. Основные электрические характеристики стабилизаторов указаны в таблице 1.

Таблица 1. Основные электрические характеристики LDO-стабилизаторов ST

Наименование Входное
напряжение, В
Выходное
напряжение, В
Вых.
ток, мА
Падение
напряжения¹, мВ
Потреб. ток (min), мкА SVR², дБ Шум на выходе³, мкВRMS/В Enable /Power Good Рекомендуемые характеристики
вых. конденсатора
Корпус
Емкость, мкф ESR, Ом
2,5…6 1,22; 1,8; 2,5; 2,6; 2,7; 2,8; 2,9; 3,0; 3,3; 4,7 150 0,4…60 85 50 30 +/- 1…22 0,005…5 SOT23-5L, TSOT23-5L, CSP (1,57×1,22 мм)
2,5…6 1,5; 1,8; 2,5; 2,8; 3,0; 3,3; 5,0 300 0,4…150 85 50 30 +/- 2,2…22 0,005…5 SOT23-5L, DFN6 (3×3 мм)
1,5…5,5 0,8; 1,0; 1,2; 1,25; 1,5; 1,8; 2,5; 3,3 150 до 80 18 62 29 +/- 0,33…22 0,15…2 SOT23-5L, SOT666, CSP (1,1×1,1 мм)
2,4…5,5 0,8; 1,2; 1,5; 1,8; 2,5; 3,0; 3,3 150 до 150 31 76 20 +/- 0,33…22 0,05…8 SOT323-5L
1,5…5,5 0,8…5,0 200 до 200 20 65 45 +/- 0,22…22 0,05…0,9 DFN4 (1×1 мм)
1,5…5,5 1,0; 1,2; 1,4; 1,5; 1,8; 2,5; 2,8; 3,0; 3,3 150 80 (100 мА) 20 67 30 +/- 1…22 0,1…1,8 CSP4 (0,8×0,8 мм)
1,5…5,5 1,0; 1,2; 1,8; 2,5; 2,9; 3,0; 3,3; 4,1; Adj 300 до 300 55 (1) 65 (48) 38 (100) +/- 0,33…22 0,1…4 CSP4 (0,69х0,69 мм)/DFN6 (1,2×1,3 мм)
1,5…5,5 2,5; 3,3; Adj 500 до 200 20 62 30 +/+ 1…22 0,05…0,8 DFN6 (3×3 мм)
1,5…5,5 1,2; 2,5; 3,3; Adj 1000 до 200 20 65 85 +/+ 1…22 0,05…0,15 DFN6 (3×3 мм)
1,25…6,0 3,3; Adj 2000 до 135 100 50 24 +/+ 1…22 0,05…1,2 DFN6 (3×3 мм), DFN8 (4×4 мм)
1,9…5,5 0,8; 1,0; 1,1; 1,2; 1,5; 1,8; 2,5; 2,8; 2,9; 3,0; 3,1; 3,2; 3,3; 3,5; Adj 200 до 150 30 55 51 +/- 1…22 0…10
1,9…5,5 0,8; 1,1; 1,2; 1,5; 1,8; 2,5; 2,9; 3,0; 3,2; 3,3; Adj 300 до 200 30 55 51 +/- 1…22 0…10 SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
2,5…13,2 1,2…1,8; 2,5…3,3; 3,6; 4,0; 4,2; 5,0; 6,0; 8,5; 9,0; Adj 200 до 200 40 45 20 +/- 1…22 0,05…0,9 SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
2,1…5,5 1,0; 1,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,3 150 до 86 17 89 6,3…9,9 +/- 0,33…10 0,05…0,6 DFN6 (2×2 мм)
1,8…5,5 3,3; Adj 150 до 70 120 51 40 +/- Любая Любой SOT23-5L
2,3…12 1,8; 2,5; 3,3; 5,0; Adj 50 до 350 3 30 560 -/- 0,22…4,7 0…10 SOT323-5L
1,5…5,5 1,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,1; 3,3 150 до 112 1 30 75 +/- 0,47…10 0,056…6 SOT666
2,5…24 2,5; 3,3; Adj 85 до 500 4,15 45 95 -/- 0,47…1 0…1,5 SOT23-5L, SOT323-5L, DFN8 (3×3 мм)

Примечания:

  1. на максимальном выходном токе;
  2. на частоте 10 кГц;
  3. в диапазоне частот от 10 Гц до 100 кГц;
  4. в скобках указаны значения для режима Green.

Микромощные LDO-стабилизаторы

Как известно, у многих схем с широким диапазоном напряжения питания при повышении напряжения увеличивается потребляемый ток, поэтому для увеличения срока службы комплекта батарей следует стабилизировать напряжение на минимально допустимом уровне, при котором еще не нарушается работа схемы . Однако при этом нужно учитывать ток потребления самого LDO – он должен быть гораздо ниже той разницы, которую мы пытаемся сэкономить. Также нужно учитывать минимальное падение напряжения на стабилизаторе, так как чем оно выше – тем раньше у нас сядут батарейки. И если лет 20 назад разработчикам были доступны только микросхемы семейства КРЕН с типовым потребляемым током более 3 мА, то сейчас выбор гораздо шире.

Для работы в микромощном режиме лучше всего подходит – уникальный стабилизатор с потреблением порядка 1 мкА (до 2,4 мкА при максимальном токе нагрузки) и падением напряжения менее 112 мВ. При этом его выходное напряжение во всем рабочем диапазоне изменяется не более, чем на 3…5%. Схема стабилизатора – простейшая (рисунок 3), без каких-либо дополнительных опций. Чуть выше энергопотребление у . Эта микросхема способна работать при входном напряжении до 12 В. А , при потребляемом токе 4,5 мкА и сравнительно невысокой стоимости, способна выдерживать входное напряжение до 26 В. Микросхемы изготавливаются в корпусах средних размеров и идеально подходят для устройств с батарейным питанием – при токе нагрузки не более единиц микроампер даже маленькая батарейка CR2032 в устройстве с будет работать десятки лет!

Вся современная радиоэлектронная аппаратура построена на элементах, чувствительных к питающему электричеству. От него зависит не только правильное функционирование, но и работоспособность схем в целом. Поэтому в первую очередь электронные устройства снабжают фиксированными стабилизаторами с малым падением напряжения. Они выполнены в виде интегральных микросхем, которые выпускают многие производители по всему миру.

Что такое стабилизатор напряжения с малым падением напряжения?

Под стабилизатором напряжения (СН) понимают такое устройство, основная задача которого состоит в поддержании на определенном неизменном уровне напряжения на нагрузке. Любой стабилизатор имеет определенную точность выдачи параметра, которая обусловлена типом схемы и компонентами, входящими в нее.

Внутренне СН выглядит подобно замкнутой системе, где в автоматическом режиме напряжение на выходе подстраивается пропорционально эталонному (опорному), которое генерирует специальный источник. Этот тип стабилизаторов именуют компенсационным. Регулирующим элементом (РЭ) в этом случае выступает транзистор - биполярник или полевик.

Элемент регулирования напряжения может работать в двух разных режимах (определяется схемой построения):

  • активном;
  • ключевом.

Первый режим подразумевает непрерывную работу РЭ, второй - работу в импульсном режиме.

Где применяют фиксированный стабилизатор?

Радиоэлектронная аппаратура современного поколения отличается мобильностью в глобальном масштабе. Системы питания устройств построены на использовании в основном химических источников тока. Задача разработчиков в этом случае состоит в получении стабилизаторов с небольшими габаритными параметрами и как можно меньшими потерями электричества на них.

Современные СН применяются в следующих системах:

  • средства мобильной связи;
  • компьютеры переносного типа;
  • элементы питания микроконтроллеров;
  • автономно работающие камеры слежения;
  • автономные охранные системы и датчики.

Для решения вопросов питания стационарной электроники применяют стабилизаторы напряжения с малым падением напряжения в корпусе с тремя выводами типа КТ (КТ-26, КТ-28-2 и др.). Их используют для создания простых схем:

  • зарядных устройств;
  • блоков питания бытовой электротехники;
  • измерительной аппаратуры;
  • систем связи;
  • спецоборудования.

Какими бывают СН фиксированного типа?

Все интегральные стабилизаторы (в состав которых входят и фиксированные) делят на две основных группы:

  • Стабилизаторы с минимально малым падением напряжения гибридного исполнения (ГИСН).
  • Микросхемы полупроводниковые (ИСН).

СН первой группы выполняют на интегральных микросхемах и полупроводниковых элементах бескорпусного типа. Все компоненты схемы размещают на подложке из диэлектрика, куда методом нанесения толстых или тонких пленок добавляют соединительные проводники и резисторы, а также элементы дискретные - переменные сопротивления, конденсаторы и др.

Конструктивно микросхемы представляют законченные устройства, выходное напряжение которых фиксировано. Это обычно стабилизаторы с малым падением напряжения на 5 вольт и до 15 В. Более мощные системы построены на мощных транзисторах бескорпусных и схеме управления (маломощной) на основе пленок. Схема может пропускать токи до 5 ампер.

ИСН микросхемы выполняют на одном кристалле, потому они имеют маленькие размеры и массу. По сравнению с предыдущими микросхемами они более надежны и дешевле в изготовлении, хотя по параметрам уступают ГИСН.

Линейные СН с тремя выводами относятся к ИСН. Если взять серию L78 или L79 (для положительных и отрицательных напряжений), то они делятся на микросхемы со:

  • Слабым током на выходе около 0.1 А (L78L**).
  • Средним значением тока, в районе 0.5 А (L78M**).
  • Сильноточные до 1.5 А (L78).

Принцип работы линейного стабилизатора с малым падением напряжения

Типовая структура стабилизатора состоит из:

  • Источника напряжения опорного.
  • Преобразователя (усилителя) сигнала ошибки.
  • Делителя сигнала и элемента регулирующего, собранных на двух резисторах.

Так как величина напряжения на выходе напрямую зависит от сопротивлений R1 и R2, то последние встраивают в микросхему и получается СН с фиксированным выходным напряжением.

Работа стабилизатора напряжения с малым падением напряжения основана на процессе сравнивания напряжения опорного с тем, которое поступает на выход. В зависимости от уровня несоответствия этих двух показателей усилитель ошибки воздействует на затвор силового транзистора на выходе, прикрывая либо открывая его переход. Таким образом, фактический уровень электричества на выходе стабилизатора будет мало отличаться от заявленного номинального.

Также в схеме присутствуют датчики защиты от перегрева и перегрузочных токов. Под воздействием этих датчиков у выходного транзистора полностью перекрывается канал, и он перестает пропускать ток. В режиме отключения микросхема потребляет всего 50 микроампер.

Схемы включения стабилизатора с малым падением напряжения

Интегральная микросхема-стабилизатор удобна тем, что имеет внутри все необходимые элементы. Установка ее на плату требует включения лишь фильтрующих конденсаторов. Последние призваны убрать помехи, приходящие от источника тока и нагрузки, как видно на рисунке.

Касательно СН серии 78xx и использовании танталовых либо керамических конденсаторов шунтирования входа и выхода, емкость последних должна быть в пределах до 2 мкФ (вход) и 1 мкФ (выход) при любых допустимых значениях напряжения и тока. Если применять алюминиевые конденсаторы, то их номинал не должен быть ниже 10 мкФ. Подключать элементы следует максимально близко к выводам микросхемы.

В случае когда нет в наличии стабилизатора напряжения с малым падением напряжения нужного номинала, можно увеличить номинал СН с меньшего на больший. За счет поднятия уровня электричества на общем выводе добиваются прироста его на такую же величину на нагрузке, как показано на схеме.

Преимущества и недостатки линейных и импульсных стабилизаторов

Интегральные микросхемы непрерывного действия (СН) имеют следующие преимущества:

  1. Реализованы в одном корпусе небольшого размера, что позволяет эффективно располагать их на рабочем пространстве печатной платы.
  2. Не требуют установки дополнительных регулирующих элементов.
  3. Обеспечивают хорошую стабилизацию выходного параметра.

К недостаткам можно отнести низкий КПД, не превышающий 60%, связанный с падением напряжения на встроенном регулирующем элементе. При большой мощности микросхемы необходимо применять радиатор охлаждения кристалла.

Более производительными считаются с малым падением напряжения на полевике, КПД которых приблизительно на уровне 85%. Достигается это благодаря режиму работы элемента регулирующего, при котором ток через него проходит импульсами.

К недостаткам схемы импульсного СН можно отнести:

  1. Сложность схематического исполнения.
  2. Наличие помех импульсного характера.
  3. Малую стабильность выходного параметра.

Некоторые схемы с использованием линейного стабилизатора напряжения

Кроме целевого использования микросхем в качестве СН, можно расширить область их применения. Некоторые варианты таких схем на базе интегральной микросхемы L7805.

Включение стабилизаторов в параллельном режиме

Чтобы увеличить ток нагрузки, СН включают параллельно друг к другу. Для обеспечения работоспособности такой схемы дополнительно в нее устанавливают резистор небольшого номинала между нагрузкой и выходом стабилизатора.

Стабилизатор тока на базе СН

Есть нагрузки, питание которых необходимо осуществлять постоянным (стабильным) током, например, светодиодная цепочка.

Схема регулирования оборотов вентилятора в компьютере

Регулятор этого типа построен таким образом, что при первоначальном включении на куллер поступает все 12 В (для его раскрутки). Далее по окончании заряда конденсатора C1 переменным резистором R2 можно будет регулировать величину напряжения.

Заключение

Собирая схему с применением стабилизатора напряжения с малым падением напряжения своими руками, важно учитывать, что некоторые типы микросхем (построенные на полевых транзисторах) нельзя паять обычным паяльником непосредственно от сети 220 В без заземления корпуса. Их статическое электричество может вывести электронный элемент из строя!

На основе мощных переключательных полевых транзисторов можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в . Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток-исток - 55 В, затвор-исток - ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 - вход, 2 - общий, 3 - выход. В качестве управляющего элемента применена микросхема DA1 - параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор-исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.

Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод - к истоку.

В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в , желательно выделенный желтым цветом. VT1 - КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы - К10-17, резисторы - Р1-4, МЛТ, С2-33.
Схема подключения модуля стабилизатора приведена на рис. 2.

При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 - площадки на печатной плате, а вывод 3 (сток транзистора VT2) - металлический вывод-стойка на керамической шайбе.

Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть - навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.

Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. - Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. - Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск
“Радио” №2 2005г.

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Вам также будет интересно:

Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса
Коллекторные двигатели постоянного тока получили широкое распространение за счет своей...
Когда и в какое время включать ближний и дальний свет, противотуманные фары и дневные ходовые огни?
Несколько лет назад в правила дорожного движения и техрегламент были внесены особые...
Антенны из пивных баночек
Эти баночные антенны в основном хвалят. Вот и я решил проверить, какой реальный диапазон...
Муфта продольно-свертная Размеры канавок валов
под фиксирующие полукольца и крепежные изделия
Элементы приводов, ременных и цепных передач - Муфты - Жесткие соединительные муфты -...
Необслуживаемый регенерационный пункт НРП-К12 Какую функцию выполняет ДП
Необслуживаемые усилительные и регенерационные пункты (НУП и НРП) являются составными...