Автомобильный - Mirtaxibel

Запрещающие знаки Знак "Запрещается использовать в качестве питьевой воды" распечатать и скачать

Когда отменят эра глонасс на ввозимые автомобили

Водородный двигатель: принцип работы и устройство

Как заводится зимой в сильные морозы

Как заправить зажигалку бензином

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Красная Крета — яркий и стильный на дороге Грета черный цвет

Как изменить вращение асинхронного электродвигателя

Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз

Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом

Преимущества приобретения авто в лизинг

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Топливный аккумулятор на спирту своими руками. Спиртовые топливные элементы прямого действия, использующие твердые кислотные электролиты


Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов .

Протон-проводящая полимерная мембрана разделяет два электрода - анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.


На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

расширенный диапазон эксплуатационных температур (-40 0 С / +40 0 С),

– отсутствие теплового пятна, шума и вибрации,

надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

высокая энергоемкость,

– толерантность к примесям в водороде,

длительный срок службы,

– экологичность и бесшумность работы.

Применение:

системы энергоснабжения для БПЛА,

портативные зарядные устройства,

источники бесперебойного питания,

другие устройства.

Экология познания. Наука и техника: С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются

Топливный элемент своими руками дома

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания достижений индустрии становится недостаточно, поэтому вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».


Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки).

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания


Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью - еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Большие надежды возлагаются на применение нанотехнологий и наноматериалов, которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы. опубликовано

Присоединяйтесь к нам в

Водород - это чистое топливо, поскольку он продуцирует только воду и представляет чистую энергию, используя возобновляемые источники энергии. Он может храниться в топливном элементе, который производит электроэнергию с помощью устройства электрохимической конверсии. Водород - источник революционной но его разработки по-прежнему очень незначительны. Причины: энергия, которую трудно произвести, рентабельность и сомнительный из-за энергоемкой природы конструкции. Но этот вариант энергоснабжения предлагает интересные перспективы с точки зрения хранения энергии, особенно когда речь идет о возобновляемых источниках.

Концепция была эффективно продемонстрирована Хамфри Дэви в начале девятнадцатого века. За этим последовала новаторская работа Кристиана Фридриха Шонбейна в 1838 году. В начале 1960-х годов НАСА в сотрудничестве с промышленными партнерами начало разработку генераторов этого типа для пилотируемых космических полетов. Результатом этого стал первый блок PEMFC.

Другой исследователь GE, Леонард Нидрах, модернизовал PEMFC Grubb, используя платину в качестве катализатора. Grubb-Niedrach был дополнительно разработан в сотрудничестве с NASA и использовался в космической программе Gemini в конце 1960-х годов. Международные топливные элементы (IFC, позднее UTC Power) разработали 1,5 кВт устройства для космических полетов Apollo. Они обеспечивали электроэнергию, а также питьевую воду для космонавтов во время их миссии. IFC впоследствии разработала 12 кВт устройства, используемые для обеспечения бортовой сети на всех рейсах космических аппаратов.

Автомобильный элемент впервые был изобретен Грулле в 1960-х годах. GM применил Union Carbide в «Electrovan» - автомобиле. Он был использован только в качестве автомобиля компании, но мог проехать до 120 миль на полном баке и достичь скорости до 70 миль в час. Kordesch и Grulke экспериментировали с водородным мотоциклом в 1966 году. Это был гибрид элемента с батареей NiCad в тандеме, который достиг впечатляющего показателя 1,18 л/100 км. Этот шаг продвинул вперед в технологии е-велосипедов и коммерциализацию е-мотоциклов.

В 2007 году топливные источники стали коммерческими в самых разных областях, они начали продаваться конечным пользователям с письменными гарантиями и возможностями обслуживания, т.е. соответствовали требованиям и стандартам рыночной экономики. Таким образом, ряд сегментов рынка стал ориентироваться на спрос. В частности, тысячи вспомогательных силовых агрегатов PEMFC и DMFC (APU) были коммерциализированы в развлекательных приложениях: лодки, игрушки и учебные комплекты.

Horizon в октябре 2009 года показала первую коммерческую электронную систему Dynario, которая работает на метанольных картриджах. Топливные элементы Horizon способны заряжать мобильные телефоны, системы GPS, камеры или цифровые музыкальные плееры.

Водородные топливные элементы представляют собой вещества, которые содержат водород в качестве топлива. Водородное топливо - это топливо с нулевым выбросом, которое выделяет энергию во время горения или посредством электрохимических реакций. Топливные элементы и батареи производят электрический ток через химическую реакцию, но первые будут вырабатывать энергию до тех пор, пока есть топливо, таким образом, никогда не теряя заряда.

Термические процессы с получением водорода обычно включают паровой риформинг - высокотемпературный процесс, когда пар реагирует с углеводородным источником с выделением водорода. Многие природные топлива способны быть реформированы для получения водорода.

Сегодня примерно 95% водорода получают из риформинга газа. Вода разделяется на кислород и водород электролизом, в устройстве, который функционирует, как у топливных элементов Horizon zero в обратном направлении.

Они применяют свет как агент для получения водорода. Существует несколько процессов, основанных на солнечных батареях:

  1. фотобиологических;
  2. фотоэлектрохимических;
  3. солнечных;
  4. термохимических.

Фотобиологические процессы используют естественную фотосинтетическую активность бактерий и зеленых водорослей.

Фотоэлектрохимические процессы - это специализированные полупроводники для разделения воды на водород и кислород.

Солнечное производство термохимического водорода применяет концентрированную солнечную энергию для реакции разделения воды вместе с другими видами, такими как оксиды металлов.

Биологические процессы используют микробы, такие как бактерии и микроводоросли, и могут продуцировать водород посредством биологических реакций. В микробной конверсии биомассы микробы разрушают органическое вещество, например, биомассу, тогда как в фотобиологических процессах микробы используют солнечный свет в качестве источника.

Устройства элементов выполнены из нескольких частей. Каждый имеет три основных компонента:

  • анод;
  • катод;
  • электропроводный электролит.

В случае применения топливных элементов Horizon, где каждый электрод изготовлен из материала с высокой площадью поверхности, пропитанного катализатором из платинового сплава, электролитный материал представляет собой мембрану и служит в виде ионного проводника. Электрическая генерация управляется двумя первичными химическими реакциями. Для элементов, использующих чистый H 2 .

Водородный газ на аноде расщепляется на протоны и электроны. Первые проводят через мембрану электролита, и вторые обтекают ее, генерируя электроток. Заряженные ионы (H + и e -) объединяются с О 2 на катоде, выделяя воду и тепло. Многочисленные экологические проблемы, которые сегодня влияют на мир, мобилизуют общество для достижения устойчивого развития и прогресса в деле защиты планеты. Здесь в контексте ключевым фактором является замена фактических основных энергетических ресурсов другими, которые могут полностью удовлетворить потребности человека.

Рассматриваемые элементы как раз являются таким устройством, благодаря которому этот аспект находит наиболее вероятное решение, так как можно получить электрическую энергию из чистого топлива с высокой эффективностью и без выбросов CO 2 .

Платина проявляет высокую активность для окисления водорода и продолжает оставаться самым распространенным материалом электрокатализатора. Одной из основных областей исследований Horizon, где топливные элементы используются с сокращенным содержанием платины, является автомобилестроение, где в ближайшем будущем планируется использование инженерных катализаторов, изготовленных из наночастиц платины, нанесенных на проводящий углерод. Эти материалы имеют преимущество высокодисперсных наночастиц, высокую электрокаталитическую площадь поверхности (ESA) и минимальный рост частиц при повышенных температурах, даже при более высоких уровнях загрузки Pt.

Pt-содержащие сплавы полезны для устройств, работающих на специализированных источниках топлива, таких как метанол или риформинг (H 2 , CO 2 , CO и N 2). Сплавы Pt/Ru показали повышенную производительность по сравнению с чистыми электрохимическими катализаторами Pt в отношении окисления метанола и отсутствия возможности отравления угарным газом. Pt 3 Co является еще одним катализатором, представляющим интерес (особенно для катодов топливных элементов Horizon), он продемонстрировал повышенную эффективность реакции восстановления кислорода, а также высокую стабильность.

Катализаторы Pt/C и Pt 3 Co/C, демонстрируют высокодисперсные наночастицы на поверхностных углеродных подложках. При выборе электролита топливного элемента учитываются несколько ключевых требований:

  1. Высокая протонная проводимость.
  2. Высокая химическая и термическая стабильность.
  3. Низкая газопроницаемость.

Водородный энергоноситель

Водород - самый простой и самый распространенный элемент во Вселенной. Это важный компонент воды, нефти, природного газа и всего живого мира. Несмотря на свою простоту и изобилие, водород редко встречается в естественном газообразном состоянии на Земле. Он почти всегда сочетается с другими элементами. И может быть полученным из нефти, природного газа, биомассы или путем разделения воды с применением солнечной или электрической энергии.

Как только водород образуется в качестве молекулярного Н 2 , энергия, присутствующая в молекуле, может выделяться путем взаимодействия с О 2 . Это может быть достигнуто либо двигателями внутреннего сгорания, либо водородными топливными элементами. В них энергия Н 2 превращается в электроток с малыми потерями мощности. Таким образом, водород является энергоносителем для перемещения, хранения и доставки энергии, произведенной из других источников.

Получение альтернативной энергии элементов невозможно без использования специальных фильтров. Классические фильтры помогают в разработке силовых модулей элементов в разных странах мира за счет высококачественных блоков. Фильтры поставляются для подготовки топлива, например метанола, для применения в элементах.

Обычно приложения для этих силовых модулей включают в себя электропитание в удаленных местах, резервное питание для критических поставок, APU на небольших транспортных средствах и морских приложениях, таких как Project Pa-X-ell, который является проектом для проверки ячеек на пассажирских судах.

Корпуса фильтров из нержавеющей стали, решающие проблемы фильтрации. В этих требовательных приложениях производители топливных элементов zero dawn специфицируют корпуса фильтров из нержавеющей стали Classic Filters благодаря гибкости в производстве, более высоким стандартам качества, быстрым поставкам и конкурентным ценам.

Водородная технологическая платформа

Horizon Fuel Cell Technologies была основана в Сингапуре в 2003 году, сегодня работает 5 ее международных дочерних компаний. Миссия фирмы заключается в том, чтобы изменить ситуацию в топливных элементах, работая глобально с целью быстрой коммерциализации, снижения технологических затрат и устраняя вековые барьеры подачи водорода. Фирма началась с небольших и простых продуктов, которые требуют низкого количества водорода, при подготовке к более крупным и сложным приложениям. Следуя строгим руководящим принципам и дорожной карте, Horizon быстро стал крупнейшим в мире производителем объемных элементов мощностью ниже 1000 Вт, обслуживая клиентов в более чем 65 странах с самым широким выбором коммерческих продуктов в промышленности.

Технологическая платформа Horizon состоит из: PEM - топливных элементов Horizon zero dawn (микротопливных и стеков) и их материалов, подачи водорода (электролиз, риформинг и гидролиз), устройств и хранения водорода.

Horizon выпустил первый в мире портативный и персональный Станция HydroFill может генерировать водород, разлагая воду в резервуаре и сохраняя ее в картриджах HydroStick. Они содержат поглощающий сплав газообразного водорода, обеспечивающий твердое хранение. Затем картриджи можно вставить в зарядное устройство MiniPak, которое может работать с небольшими элементами топливного фильтра.

Горизонт или домашний водород

Технологии Horizon выпускают водородную систему зарядки и хранения энергии для домашних нужд, сохраняя энергию дома, чтобы заряжать портативные устройства. Horizon отличился в 2006 году игрушечным «H-racer», маленьким автомобилем с водородным элементом, признанного «лучшим изобретением» года. Horizon предлагает децентрализовать хранение энергии дома благодаря своей водородной зарядной станции Hydrofill, которая в состоянии перезаряжать небольшие портативные и многоразовые батареи. Эта водородная станция требует только воду для работы и выработки энергии.

Работа может быть обеспечена сетью, солнечными батареями или ветряной турбиной. Оттуда водород извлекается из емкости для воды станции и хранится в твердой форме в небольших элементах из металлических сплавов. Станция Hydrofill, продается по цене примерно 500 долларов США, является авангардным решением, для телефонов. Где найти топливные элементы Hydrofill по этой цене для пользователей не составит труда, нужно просто задать соответствующий запрос в интернете.

Подобно электрическим автомобилям с батарейным питанием, те, которые работают на водороде, также используют электричество для управления машиной. Но вместо того, чтобы хранить это электричество в батареях, которых требуют много часов для зарядки, элементы генерируют энергию прямо на борту машины, с помощью реакции водорода и кислорода. Реакция протекает в присутствии электролита - неметаллического проводника, в котором электрический поток переносится движением ионов в устройствах, где топливные элементы Horizon zero оборудованы протон-обменными мембранами. Они функционируют следующим образом:

  1. Водородный газ подается на "-" анод (А) ячейки, а кислород направляется на положительный полюс.
  2. На аноде катализатор - платина, отбрасывает электроны водородных атомов, оставляя "+" ионы и свободные электроны. Через мембрану, расположенную между проходят исключительно ионы.
  3. Электроны создают электроток, двигаясь по внешней цепи. На катоде электроны и водородные ионы объединяются с кислородом для получения воды, вытекающей из ячейки.

До сих пор две вещи мешали крупному производству автомобилей с водородным двигателем: стоимость и производство водорода. До недавнего времени платиновый катализатор, который расщепляет водород на ион и электрон, был чрезмерно дорогим.

Несколько лет назад водородные топливные элементы стоили около 1000 долларов за каждый киловатт энергии или около 100 000 долларов для автомобиля. Проводились различные исследования для снижения стоимости проекта, в том числе по замене платинового катализатора платино-никелевым сплавом, который в 90 раз более эффективный. В прошлом году Министерство энергетики США сообщило, что стоимость системы снизилась до 61 долл. США за киловатт, что все еще неконкурентоспособно в автомобилестроении.

Рентгеновская компьютерная томография

Этот метод неразрушающего контроля используется для изучения структуры двухслойного элемента. Другие методы, обычно используемые для изучения структуры:

  • ртутная интрузионная порозиметрия;
  • атомно-силовая микроскопия;
  • оптическая профилометрия.

Результаты показывают, что распределение пористости имеет прочную основу для расчета тепловой и электрической проводимости, проницаемости и диффузии. Измерение пористости элементов является очень сложным из-за их тонкой, сжимаемой и неоднородной геометрии. Результат показывает, что пористость уменьшается при сжатии GDL.

Пористая структура оказывает значительное влияние на массоперенос в электроде. Эксперимент проводился при различных давлениях горячего прессования, которые варьировались от 0,5 до 10 МПа. Производительность в основном зависит от металла платины, стоимость которого очень высока. Диффузионность может увеличиваться за счет использования химически связующих веществ. Кроме того, изменения температуры влияют на время жизни и среднюю производительность элемента. Скорость деградации высокотемпературных PEMFC в начальное время низкая, а затем быстро увеличивается. Это используется для определения образования воды.

Проблемы коммерциализации

Чтобы быть конкурентоспособными по стоимости, затраты на топливную ячейку должны быть уменьшены в два раза, а срок службы батареи аналогичным образом увеличен. Однако сегодня эксплуатационные расходы по-прежнему намного выше, поскольку затраты на производство водорода составляют от 2,5 до 3 долларов США, а поставляемый водород вряд ли будет стоить меньше 4 долларов/кг. Чтобы элемент эффективно конкурировал с батареями, следует иметь короткое время заправки и минимизацию процесса замены батареи.

В настоящее время технология использования полимерных топливных элементов будет стоить 49 долларов США в кВт при производстве в массовом масштабе (не менее 500 000 единиц в год). Однако для того, чтобы конкурировать с автомобилями внутреннего сгорания, автомобильные топливные элементы должны достигнуть приблизительно 36 долларов/кВт. Экономия может быть достигнута за счет снижения материальных затрат (в частности, использования платины), увеличения плотности мощности, снижения сложности системы и повышения долговечности. Существует несколько проблем для широкомасштабной коммерциализации технологии, включая преодоление ряда технических барьеров.

Технические задачи будущего

Стоимость стека зависит от материала, техники и технологий изготовления. Выбор материала зависит не только от пригодности материала для функций, но и от технологичности. Ключевые задачи элементов:

  1. Снижение нагрузки на электрокатализатор и увеличение активности.
  2. Повышение долговечности и уменьшение деградации.
  3. Оптимизация дизайна электрода.
  4. Улучшение переносимости примесей на аноде.
  5. Выбор материалов для компонентов. Он основываетсяся главным образом на стоимости, не жертвуя производительностью.
  6. Отказоустойчивость системы.
  7. Работоспособность элемента зависит в основном от прочности мембраны.

Основными параметрами GDL, которые влияют на производительность ячейки, являются проницаемость реагентов, электропроводность, теплопроводность, механическая поддержка. Толщина GDL является важным фактором. Более толстая мембрана обеспечивает лучшую защиту, дает механическую прочность, имеет более длинные диффузионные пути и больше теплового и электрического уровня сопротивления.

Среди различных типов элементов PEMFC адаптирует больше мобильных приложений (автомобили, ноутбуки, мобильные телефоны и т.д.), следовательно, представляют растущий интерес для широкого круга производителей. Фактически PEMFC имеет много преимуществ, таких как низкая рабочая температура, устойчивая работа при высокой плотности тока, малый вес, компактность, потенциал для низкой стоимости и объема, длительный срок службы, быстрые стартапы и пригодность для прерывистой работы.

Технология PEMFC хорошо подходит для различных размеров и также используется с различными видами топлива, когда их надлежащим образом обрабатывают для получения водорода. Как таковой, он находит применение из малой шкалы субватт, вплоть до мегаваттной шкалы. 88% от общего объема поставок в 2016-2018 годах были PEMFC.

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом - сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и - вот неполный список альтернативных вариантов. Казалось бы - живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии - водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H 2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы - мировой океан на 2/3 состоит из химического элемента H 2 , да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема - для получения чистого H 2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один - кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула - HHO, а теплотворная способность - 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор:

Область применения

Сегодня электролизёр - такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела - всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд - приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить - их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

Электрическая схема ШИМ-регулятора Схема единичной пары электродов, используемых в топливной ячейке Мейера Схема ячейки Мейера Электрическая схема ШИМ-регулятора Чертёж топливной ячейки
Чертёж топливной ячейки Электрическая схема ШИМ-регулятора Электрическая схема ШИМ-регулятора

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование - достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    - диаметр внешней трубки - 25.317 мм;
    - диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома:

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 - 7 мм - для подачи воды в пространство между электродами и толщиной 8 - 10 мм - для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание - жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение - безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

История

Первый элемент был сделан, кажется, из грифеля от русского (это важно) простого карандаша, а корпус был пробкой из-под пива. Все это подогревалось на кухонной плите. Электролитом был порошок "Диггер" для прочистки труб, состоящий из NaOH, если верить этикетке. Поскольку удалось получить какой-то ток, я подумал, что, наверное, такой элемент действительно может работать. Консервные банки начинали течь по швам (припой разъедался щелочью), и я даже не помню, какие результаты получились. Для более серьезного опыта купил жульенницу из нержавейки. Однако, с ней ничего не получилось. Мало того, что напряжение было всего 0,5 вольта, оно было еще и направлено не в ту сторону. Также выяснилось, что угольки от карандашей очень любят рассыпаться на составные части. Видимо, они сделаны не из цельного кристалла графита, а склеены из пыли. Та же судьба постигла стержни от пальчиковых батареек. Также были куплены щетки от каких-то электродвигателей, но у них быстро приходили в негодность места, где подводящий провод входит в щетку. К тому же, одна пара щеток, как оказалось, содержала медь или какой-то другой металл (с щетками это бывает).

Крепко почесав затылок, я решил, что для надежности лучше сделать сосуд из серебра, а уголек - по технологии, описанной Жако, т.е., спеканием. Серебро стоит умеренных денег (цены колеблются, но где-то порядка 10-20 рублей за грамм). Я встречал чай, который стоит гораздо дороже.

Известно, что серебро устойчиво в расплаве NaOH, в то время как железо дает ферраты, например, Na2FeO4. Поскольку вообще железо обладает переменной валентностью, то его ионы могут вызвать в элементе "короткое замыкание", во всяком случае, в теории. Поэтому я решил для начала проверить случай серебра, как более простой. Сначала была куплена мельхиоровая посеребреная ложка, и при испытании со щетками сразу получилось 0,9В открытой цепи с нужной полярностью, а также, довольно большой ток. Впоследствии (не практически, а теоретически) выяснилось, что серебро тоже может растворяться в щелочи в присутствии пероксида натрия Na2O2, который в некоторых количествах образуется при продувании воздуха. Будет ли это происходить в элементе или под защитой углерода серебро находится в безопасности - я не знаю.

Ложка прожила недолго. Серебряный слой вздулся и она прекратила работать. Мельхиор неустойчив в щелочи (как и большинство существующих на свете материалов). После этого я сделал специальный стаканчик из серебряной монеты, на котором и была получена рекордная мощность в 0,176 ватт.

Все это было проделано в обычной городской квартире, на кухне. Я ни разу крупно не обжегся, не устроил пожара и всего один раз пролил расплавленную щелочь на плиту (эмаль немедленно разъело). Инструмент был использован самый простой. Если получится узнать правильный вид железа и правильный состав электролита, то такой элемент сможет сделать на коленке каждый не совсем безрукий мужик.

В 2008 году выявилось несколько "правильных видов железа". Например, пищевая нержавейка, жесть консервных банок, электротехнические стали для магнитопроводов, а также низкоуглеродистые стали - ст1пс, ст2пс. Чем меньше углерода, тем лучше работа. Нержавейка, похоже, работает хуже чистого железа (она, кстати, и дороже намного). "Норвежское листовое" железо, оно же - Шведское - это железо, которое делалось кричным способом в Швеции на древесном угле и содержало не более 0,04% углерода. Сейчас такое низкое содержание углерода можно найти только в электротехнических сталях. Наверное, лучше всего делать стаканчики штамповкой из листовой электротехнической стали

Изготовление серебряного стаканчика

В 2008 году выяснилось, что железный стаканчик тоже работает хорошо, поэтому я убираю всё, что касается серебряного стаканчика. Это было интересно, но теперь уже неактуально.

Можно пытаться использовать графит. Но я не успел. Я выпросил у тетеньки-водителя накладку для рогов троллейбуса, но это было уже в конце моей экспериментальной эпопеи. Еще можно попробовать щетки от двигателей, но они часто бывают с медью, что нарушает чистоту эксперимента. У меня было два варианта щеток, одни оказались с медью. Карандаши не дают никакого результата, потому что у них маленькая площадь поверхности и с них неудобно снимать ток. Стержни от батарей в щелочи разваливаются
(что-то происходит со связующим). Вообще говоря, графит - это наихудшее топливо для элемента, т.к. он наиболее химически стоек. Поэтому изготавливаем электрод "по честному". Берем древесный уголь (я покупал в супермаркете березовый уголь для шашлыков), мелется как можно мельче (я молол сначала в фарфоровой ступке, потом купил кофемолку). В промышленности электроды делают из нескольких фракций угля, смешивая их друг с другом. Ничто не мешает сделать так же. Порошок подвергается обжигу для повышения электропроводности: его нужно на несколько минут нагреть до как можно более высокой температуры (1000 и больше). Естественно, без доступа воздуха.

Я для этого сделал горн из двух вложенных друг в друга консервных банок. Между ними для теплоизоляции навалены кусочки сухой глины. Дно обеих банок пробито, чтобы было куда дуть воздуху. Внутренняя банка насыпается углями (которые выполняют роль топлива), среди них помещается металлическая коробочка - "тигель", я ее тоже сворачивал из жести от консервной банки. В коробочку запихивается завернутый в бумажный кулек угольный порошок. Должен быть зазор между свертком с углем и стенками "тигля". Он засыпается песком, чтобы не было доступа воздуха. Угли поджигаются, затем сквозь дырки в дне производится наддув обычным феном. Все это достаточно пожароопасно - летят искры. Нужны защитные очки, а также нужно смотреть, чтобы рядом не было занавесок, бочек с бензином и других пожароопасных предметов. Лучше бы, по хорошему, делать такие дела где-нибудь на зеленой лужайке в период дождей (в перерыве между дождями). Извините, но мне лень рисовать всю эту конструкцию. Думаю, догадаетесь и без меня.

Далее к обожженому порошку на глаз добавляется некоторое количество сахара (наверное, от трети до половины). Это - связующее. Потом - чуть-чуть воды (когда у меня были грязные руки и лень было открывать кран, я просто плевал в него и добавлял пиво вместо воды, не знаю, насколько это имеет значение; вполне возможно, что органика важна. Все это тщательно перемешивается в ступке. В результате должна получиться пластичная масса. Из этой массы нужно сформовать электрод. Чем лучше ты его спрессуешь, тем лучше. Я брал заглушенный кусок трубки и забивал уголь в трубку меньшей трубкой, с помощью молотка. Чтобы изделие не развалилось при извлечении из трубки, перед набивкой в трубу вставлял несколько ободков из бумаги. Заглушка должна быть сьемной, а еще лучше - если труба будет распилена вдоль и соединена хомутами. Тогда после прессовки можно просто разьединить хомуты и достать заготовку уголька в целости и сохранности. В случае сьемной заглушки нужно будет выдавить готовую заготовку из
трубы (при этом она может развалиться). Уголек у меня имел диаметр 1,2-1,5 см и длину 4-5 см.

Готовая форма сушится. Для этого я включал газовую плиту на очень маленький огонь, ставил на нее пустую консервную банку кверху дном и на дно клал уголек. Сушка должна быть достаточно медленной, чтобы пары воды не разорвали заготовку. После испарения всей воды начнет "кипеть" сахар. Он превратится в карамель и склеит кусочки угля между собой.

После остывания нужно просверлить в угольке продольное (вдоль его оси симметрии) круглое отверстие, в которое будет вставляться отводящий электрод. Диаметр отверстия - не помню, кажется, 4 мм. При этой процедуре уже может все накрыться, потому что конструкция хрупкая. Я сначала сверлил 2 мм сверлом, потом аккуратно (вручную) расширял 3-мм и 4-мм сверлами, или даже надфилем, точно не помню. В принципе, можно эту дырку сделать уже на этапе формовки. Но это -
нюансы.

После того, как все высушено и просверлено, нужно произвести обжиг. Общий смысл - нужно при достаточно плавном наборе температуры подвергнуть уголек сильному и равномерному нагреву без доступа воздуха на некоторое время (около 20 минут). Нагревать нужно постепенно, остужать - тоже. Температура - чем выше, тем лучше. Желательно, больше 1000. У меня было
оранжевое (ближе к белому) каление железа в импровизированном горне. Промышеленные электроды обжигают много суток, с очень плавным подводом-отводом теплоты. Ведь это, по сути - керамика, которая хрупка. Гарантировать, что уголек не треснет, я не могу. Я все делал на глаз. Некоторые угольки трескались сразу при начале эксплуатации.

Итак, уголек готов. Он должен иметь как можно меньшее сопротивление. При измерении сопротивления нужно не прикасаться к угольку иглами тестера, а взять два многожильных провода, прислонить их к сторонам уголька (не к концам стержня, а просто по диаметру) и сильно прижать пальцами (только чтобы не треснул), см. рисунок, на рисунке розовая аморфная масса - это пальцы, сжимающие жилы проводов.

Если сопротивление - 0.3-0.4 ома (это было на грани чувствительности моего тестера), то это - хороший уголек. Если больше 2-3 ом, то плохой (удельная мощность будет маленькая). Если уголек не удался, можно повторить обжиг.

После того, как сделали обжиг, делаем отводящий электрод. Это - полоска серебра или железа - 2008 год длиной, равной двукратной или чуть меньше длине уголька,
шириной - два диаметра отверстия. Толщина - допустим, 0,5 мм. Из нее нужно свернуть цилиндр, внешний диаметр которого равен
диаметру отверстия. Но цилиндр не получится, потому что ширина слишком мала, получится цилиндр с продольной прорезью. Эта прорезь важна, для компенсации теплового расширения. Если сделать полный цилиндр, то серебро при нагреве разорвет уголек.
"Цилиндр" вставляем в уголек. Нужно сделать так, чтобы он плотно входил в дырку. Здесь есть две стороны: чрезмерное усилие разорвет уголек, при слабом усилии не будет достаточного контакта (он очень важен). См. рисунок.

Эта конструкция родилась не сразу, она представляется мне более совершенной, чем те хомуты, которые нарисованы в патенте у Жако. Во-первых, при таком контакте ток идет не вдоль, а по радиусу цилиндрического уголька, что позволяет существенно снизить электрические потери. Во-вторых, металлы имеют больший коэффициент теплового расширения, чем уголь, поэтому контакт угля с металлическим хомутом ослабевает при нагреве. В моем случае контакт упрочняется или сохраняет свою силу. В-третьих, если отводящий электрод сделан не из серебра, то уголь предохраняет его от окисления. Скорее дайте мне патент!

Теперь можно еще раз померять сопротивление, одним из полюсов будет токоотводящий электрод. Кстати, у моего тестера 0.3 ома - это уже предел чувствительности, поэтому лучше пропустить ток известного напряжения и померять его силу.

Подача воздуха

Берем стальной стерженек от шариковой ручки большой емкости. Желательно - пустой. Удаляем из него блок с шариком - остается просто железная трубочка. Тщательно удаляем остатки пасты (у меня это не очень хорошо получилось и паста потом обуглилась, что мешало жить). Сначала это делается водой, а потом лучше все же несколько раз прокалить стерженек в пламени горелки. Произойдет пиролиз чернил, после этого останется уголь, который можно выковырять.

Далее находим какую-то еще трубку, чтобы соединить этот стерженек (он будет раскален) с ПВХ-шной трубкой, ведущей от аквариумного компрессора, которым кондиционируют рыбок. Все должно быть достаточно герметично. На ПВХ-шную трубку ставим регулируемый зажим, потому что даже самый хилый компрессор дает слишком много воздуха. В идеале нужно сделать серебряную, а не стальную трубку и у меня это даже получилось, но я не смог обезпечить герметичное соединение серебряной трубки с ПВХ-шной. Промежуточные трубки сильно травили воздух (из-за тех же тепловых зазоров), поэтому в итоге я остановился на стальном стерженьке. Конечно, эта проблема разрешима, но нужно просто было потратить на это время и силы и подобрать соответствующую ситуации трубку. Вообще, в этой части я сильно отступил от патента Жако. Сделать такую розочку, как нарисована у него, я не смог (а если честно, то я тогда недостаточно хорошо рассмотрел ее конструкцию).

Здесь следует сделать небольшое отступление и обсудить, насколько неправильно Жако представлял работу своего элемента. Очевидно, что кислород переходит в ионную форму где-то на катоде, по формуле O2+4e-=2O2-, либо какая-то аналогичная реакция, где кислород восстанавливается и соединяется с чем-то. То есть, важно обезпечить тройное соприкосновение воздуха, электролита и катода. Это может происходить при контакте пузырьков воздуха с металлом распылителя и электролитом. То есть, чем больше суммарный периметр всех отверстий распылителя, тем больше должна быть сила тока. Также, если сделать стаканчик с наклонными краями, то поверхность тройного соприкосновения тоже может увеличиться, см. рис.

Другой вариант - это когда на катоде восстанавливается растворенный кислород. В этом случае, площадь тройного соприкосновения не имеет особого значения, а нужно лишь максимизировать площадь поверхности пузырьков, чтобы ускорить растворение кислорода. Правда, в этом случае непонятно, почему растворенный кислород не окисляет уголь непосредственно, без электрохимической реакции (работая "мимо" электрической цепи). Видимо, в этом случае важны каталитические свойства материала стаканчика. Ну ладно, это все лирика. В любом случае, нужно делить струю на мелкие пузырьки. Те попытки сделать это, которые я предпринимал, не были особо успешными.

Для этого нужно было сделать тонкие отверстия, с которыми получилась куча проблем.

Во-первых, тонкие отверстия быстро засоряются, т.к. железо корродирует, ржавчина и остатки угля (вспомним, что там когда-то была паста от ручки) выпадают из стерженька и затыкают отверстия.
Во-вторых, отверстия получаются неравной величины и сложно заставить воздух идти одновременно из всех отверстий.
В-третьих, если два отверстия находятся рядом, то возникает нехорошая тенденция слияния пузырьков еще до их отрыва.
В-четвертых, компрессор подает воздух неравномерно и это тоже как-то влияет на размер пузырьков (видимо, выскакивает один пузырек за один толчок). Все это можно легко наблюдать, налив в прозрачную банку воду и испытав распылитель в ней. Конечно, у щелочи другая вязкость и коэффициент поверхностного натяжения, поэтому придется действовать наугад. Я так и не смог победить эти проблемы и плюс к этому, проблему утечек воздуха из-за тепловых зазоров. Из-за этих утечек распылитель не мог начать работать, поскольку для этого нужно преодолеть силы поверхностного натяжения. Как раз тут полностью проявились недостатки хомутов. Как их не затягивай, при нагреве они все равно ослабевают. В итоге, я перешел к простейшему распылителю из стерженька от шариковой ручки, который давал только одну струю пузырьков. Видимо, чтобы сделать это по-нормальному, нужно тщательно избавиться от утечек, подавать воздух под существенным давлением (больше, чем создаваемое аквариумным компрессором) и через мелкие отверстия.

Эта часть конструкции у меня проработана откровенно плохо...

Сборка

Все. Собираем все вместе. Нужно так все установить на зажимах, чтобы
1. Не было короткого замыкания через несущую конструкцию.
2. Уголек не касался трубки, вдувающей воздух, а также стенок
стаканчика. Это будет трудно, поскольку зазоры малы, зажимы хлипки, а при работе элемента щелочь будет булькать. Также будет действовать архимедова сила, которая будет все смещать куда не надо, и сила поверхностного натяжения, притягивающая уголек к другим предметам. Серебро станет мягким от нагрева. Поэтому, в итоге, я держал уголек пассатижами за конец отводящего электрода. Это было плохо. Для нормальной работы нужно все же сделать крышку (видимо, только из фарфора - глина размокает в щелочи и теряет прочность, может быть, можно обожженую глину использовать). Идея о том, как сделать эту крышку, есть в патенте Жако. Главное, что она должна довольно хорошо удерживать уголек, т.к. даже при небольшом перекосе он будет касаться стаканчика у дна. Для этого она должна иметь большую высоту. Подобрать такую фарфоровую крышку мне не удалось, сделать керамическую из глины - тоже (все, что я пытался делать из глины - быстро трескалось, видимо, я как-то не так обжигал). Единственная небольшая хитрость состоит в том, чтобы использовать металлическую крышку и слой путь даже плохо обожженной глины в качестве теплоизоляции. Этот путь тоже не так прост.

Короче говоря, конструкция элемента была у меня тоже никуда не годной.

Еще неплохо заготовить инструмент, которым можно будет достать кусок уголька, который может отвалиться от электрода и упасть в щелочь. Может отвалиться кусок уголька и упасть в щелочь, тогда будет короткое замыкание. У меня в качестве такого инструмента была гнутая стальная скрепка, которую я держал пассатижами. Подводим провода - один к ручке, другой - к отводящему электроду. Можно припаять, хотя я использовал две металлических пластинки и свинчивал их винтиками (все - от детского металлического конструктора). Главное - понимать, что вся конструкция работает при низком напряжении и все соединения должны быть сделаны хорошо. Измеряем сопротивление при отсутствии электролита между электродами - убеждаемся, что оно велико (хотя бы 20 Ом). Измеряем сопротивления всех соединений - убеждаемся, что они малы. Собираем схему с нагрузкой. Например, сопротивление 1 Ом и последовательно включенный амперметр. У тестеров низкое сопртоивление амперметра бывает только в режиме измерения единиц ампер, желательно это заранее выяснить. Можно либо включить в режим изменения единиц ампер, (ток получится от 0.001 до 0.4 А), либо вместо последовательно включенного амперметра включить параллельно вольтметр (напряжение будет от 0.2 до 0.9 В). Желательно предусмотреть возможность менять условия в ходе опыта, чтобы замерять напряжение раскрытой цепи, ток короткого замыкания и ток с нагрузкой 1 ом. А лучше, если сопротивление тоже можно менять: 0.5 ом, 1 Ом и 2 Ом, чтобы найти то, при котором будет достигнута максимальная мощность.

Включаем компрессор от аквариума и заворачиваем зажим, чтобы воздух шел еле-еле (а, кстати, работоспособность подводящего трубопровода нужно проверить, погружая его в воду. Поскольку плотность щелочи - 2,7, нужно погрузить на соответствующую большую глубину. Полная герметичность не обязательна, главное, чтобы и на такой глубине из конца трубки что-то булькотило.

Меры предосторожности

Далее идет работа с расплавом щелочи. Как бы объяснить, что такое расплав щелочи? Вам попадало в глаза мыло? Неприятно, правда? Так вот, расплав NaOH - это тоже мыло, только разогретое до 400 градусов и в сотни раз более едкое.

Защитные меры при работе с расплавом щелочи строго обязательны!

Прежде всего, строго необходимы хорошие защитные очки . Я близорук, поэтому я одевал двое очков - сверху пластиковые защитные, а под них еще и стеклянные. Защитные очки должны защищать от попадания брызг не только спереди, но и сбоку. В такой амуниции я чувствовал себя в безопасности. Несмотря на защитные очки, приближать лицо к аппарату не рекомендуется вовсе.

Кроме глаз, необходимо защитить и руки. Я все делал очень аккуратно, поэтому под конец уже "замастерился" и работал в футболке. Это полезно, поскольку попадающие иногда на руки мельчайшие брызги щелочи дают ожег, не позволяющий в течение нескольких дней забыть, с каким веществом имеешь дело.

Но на руках, естественно, были перчатки. Сначала резиновые хозяйственные (не самые тонкие), а поверх них - пупырчатые тряпичные пупырышки торчали с задней стороны ладони. Их я смачивал водой, чтобы можно было браться за горячие предметы. В такое паре перчаток руки более-менее защищены. Но нужно следить, чтобы внешние перчатки никогда не были слишком мокрые. Капля воды, попадающая в электролит, мгновенно закипает, при этом электролит очень здорово разбрызгивается. Если такое произошло (а такое у меня происходило раза три), возникают проблемы с органами дыхания. В этих случаях я немедленно задерживал дыхание, не завершая вдох (каякерская практика помогает не впадать в панику в таких ситуациях), и сваливал из кухни подобру-поздорову.

Вообще, для защиты органов дыхания нужна хорошая вентиляция при проведении опыта. В моем случае это был просто сквозняк (дело было летом). Но в идеале это должна быть вытяжка или открытый воздух.

Поскольку брызги щелочи неизбежны, все, что находится в ближайшей окрестности стаканчика, покрывается щелочью в той или иной степени. Если взяться за нее голыми руками, можно получить ожег. Нужно все промывать после завершения опыта, в том числе, перчатки.

Еще на случай ожега у меня всегда была рядом заготовлена емкость с водой и емкость с разбавленным уксусом, для нейтрализации щелочи при сильном ожоге. Уксус ни разу не пригодился, к счастью и я не могу сказать, стоит ли им пользоваться вообще. В случае ожега нужно сразу смывать щелочь большим количеством воды. Еще есть народное средство от ожегов - моча. Оно, вроде бы, тоже помогает.

Собственно работа с элементом

Насыпаем в стаканчик сухой NaOH (я покупал средство "Диггер" для прочистки труб). Можно добавить MgO и другие ингредиенты, например, CaCO3 (зубной порошок или мел) или MgCO3 (у меня был MgO, добытый друзьями). Поджигаем горелку и греем. Поскольку NaOH крайне гигроскопичен, нужно это делать сразу (а пакетик с NaOH - плотно закрывать). Неплохо бы сделать так, чтобы стаканчик был окружен теплом со всех сторон - ток ОЧЕНЬ сильно зависит от температуры. Т.е., сделать импровизированную камеру сгорания и направить в нее пламя горелки (нужно еще следить, чтобы баллончик у горелки не взорвался, по-моему эти горелки достаточно плохо сделаны с этой точки зрения, как я уже писал, для этого нужно, чтобы горячие газы не попадали на баллончик, и лучше держать его в нормальном положении, а не "кверх ногами").
Иногда оказывается удобным подводить пламя горелки сверху, но это - уже после того, как все расплавится. Тогда одновременно греется нагнетательная трубка, отводящий электрод (и уголек через него), верх стакана, где больше всего воздушных пузырьков). Если мне память не изменяет, самый большой результат был получен именно таким образом.

Через какое-то время щелочь начнет плавиться и ее объем уменьшится. Нужно подсыпать порошка, так, чтобы стаканчик был заполнен на 2/3 по высоте (щелочь будет утекать из-за каппилярности и разбрызгивания). Труба подачи воздуха у меня работала плохо (из-за теплового расширения зазоры и неплотности увеличатся, а из-за хорошего теплоотвода щелочь в ней может застывать). Иногда воздух вообще переставал поступать. Чтобы это исправить, я делал следующее:
1. Продув. (временное аккуратное увеличение подачи воздуха)
2. Подьем. (меньше будет напор и воздух вытеснит столб щелочи из
трубы)
3. Прогрев (достать из стаканчика и прогреть горелкой, чтобы щелочь внутри распылителя расплавилась).

Вообще, элемент начинает хорошо работать при температуре красного каления (щелочь начинает светиться). При этом начинает идти пена (это CO2), и раздаются хлопки со вспышками (то ли это водород, то ли CO догорает, я так и не понял).
Мне удалось добиться максимальной мощности 0,025 вт/см2 или 0,176 вт всего с элемента, при сопротивлении нагрузки в 1,1 Ома. При этом я измерял ток амперметром. А можно было измерять и падение напряжения на нагрузке.

Вырождение электролита

В элементе происходит нехорошая побочная реакция

NaOH+CO2=Na2CO3+H2O.

Т.е., через какое-то время (десятки минут) все застынет (температура плавления соды - не помню, но около 800). Некоторое время это можно преодолевать, подсыпая еще щелочи, но в конце концов все равно - электролит застынет. По поводу борьбы с этим - см. другие страницы на этом сайте, начиная со страницы об УТЭ Вообще говоря, можно использовать NaOH, невзирая на эту проблему, о чем и писал Жако в своем патенте. Поскольку есть способы получения NaOH из Na2CO3. Например, вытеснение негашеной известью по реакции Na2CO3+CaOH=2NaOH+CaCO3, после чего CaCO3 можно прокалить и получится опять CaO. Правда, такой способ очень энергоемок и общий КПД элемента при этом упадет очень сильно, да и сложность увеличится. Поэтому, я думаю, что все же нужно искать стабильный состав электролита, который нашли в SARA. Вполне возможно, что это можно сделать, найдя заявки SARA на патенты в базе патентного ведомства США (http://www.uspto.gov), тем более, что за прошедшее время они могли стать уже выданными патентами. Но у меня руки пока не дошли. Собственно, и сама эта идея появилась лишь в ходе подоготовки этих материалов. Видимо, скоро я все же это сделаю.

Итоги, мысли и выводы

Тут я, может быть, немного повторюсь. Можно начинать не с серебра, а сразу с железа. Когда я пробовал использовать жульенницу
из нержстали, у меня получилось плохо. Теперь я понимаю, что первая причина этого - низкая температура и большой зазор между электродами. В своей статье Jacques пишет, что плохая работа с железом связана с тем, что к железу пригорает масло и образуется второй угольный электрод, поэтому нужно очень тщательно очистить железо от малейших следов масла, а также использовать железо
с низким содержанием углерода. Может быть, и так, но я все же думаю, что есть еще одна, более важная причина. Железо - элемент переменной валентности. Оно растворяется и образует "короткое замыкание". В пользу этого говорит и изменение цвета. При использовании серебра цвет электролита не меняется (серебро - самый устойчивый металл к действию расплавленных щелочей). При
использовании железа электролит становится коричневым. При использовании серебра напряжение открытой цепи достигает 0.9В и выше. При использовании железа - существенно меньше (не помню точно, но не более 0.6В) Насчет того, какое железо нужно использовать, чтобы все хорошо работало - есть на других страницах. Еще немного - насчет водяного пара, о котором пишет SARA. С одной стороны, он всем хорош (в теории): не дает железу переходить в раствор (известна реакция разложения ферратов щелочных металлов горячей водой, что-то типа Na2FeO4+H2O=2NaOH+Fe2O3) и вроде бы должен сдвигать равновесие в нехорошей побочной реакции. Я посмотрел термодинамику реакции NaOH+CO2=Na2CO3+H2O с помощью он-лайн программы F*A*C*T (http://www.crct.polymtl.ca/FACT/index.php) При всех температурах равновесие в ней очень сильно сдвинуто вправо, т.е., вода вряд ли может существенно вытеснить углекислый газ из соединения с окисью натрия. Возможно, что ситуация меняется в сплаве NaOH-Na2CO3, либо образуется как бы водный раствор, но я не знаю, как это выяснить. Думаю, что в данном случае практика - критерий истины.

Основное, с чем можно столкнуться при проведении опытов с паром - это конденсация. Если где-то по дороге от места ввода воды в воздушную магистраль температура любой стенки упадет ниже 100С, вода может сконденсироваться, а потом с током воздуха попасть в щелочь в виде капельки. Это очень опасно и нужно этого изо всех сил избегать. Особенно опасно то, что температуру стенок не так легко промерить. Сам я ничего с паром делать не пробовал.

Вообще, конечно, нужно проводить такие работы не в квартире, а, как минимум, на даче, и делать сразу элемент большего размера. Для этого, естественно, понадобится больший горн для обжига, большая "печка" для подогрева элемента, больше исходных материалов. Зато будет гораздо более удобно работать со всеми деталями. Особенно это касается устройства самого элемента, который у меня не имел крышки. Сделать большую крышку - гораздо проще, чем маленькую.

Насчет серебра. Серебро, конечно, стоит не так уж дешево. Но если делать серебряный электрод достаточно тонким, то элемент с серебром может стать рентабельным. Например, пусть удалось сделать электрод толщиной 0,1мм. При пластичности и ковкости серебра это будет легко (серебро можно протягивать сквозь валки в очень тонкую фольгу и я даже хотел это делать, но не нашлось валков). При плотности около 10г/см^3, один кубический сантиметр серебра стоит примерно 150 рублей. Он даст 100 квадратных сантиметров поверхности электрода. Можно получить и 200см^2, если взять два плоских уголька и расположить серебряную пластинку между ними. При достигнутой мной удельной мощности в 0,025вт/см^2, получается мощность в 5 ватт или 30 рублей за ватт, или 30.000 рублей за киловатт. Ввиду простоты конструкции, можно ожидать, что остальные компоненты киловаттного элемента (печка, воздушный насос) будут существенно дешевле. Корпус при этом можно сделать из фарфора, который относительно стоек к расплаву щелочи. В результате получится не слишком дорого, даже по сравнению с бензоэлектростанциями малой мощности. А уж солнечные батареи с ветряками и термоэлектрогенераторами отдыхают далеко позади. Чтобы еще сильно снизить цену, можно попытаться сделать сосуд из посеребренной меди. В этом случае, слой серебра будет еще в 100-1000 раз тоньше. Правда, мои опыты с мельхиоровой ложкой закончились неудачно, так что неясно, насколько серебряное покрытие окажется стойким. То есть, даже использование серебра открывает довольно неплохие перспективы. Единственное, что может тут оказаться неудачным - это если серебро будет недостаточно стойким.

Еще о материалах корпуса. Якобы, при работе элемента большое значение имеют пероксиды натрия, например, Na2O2, который должен возникать при продуве воздуха в NaOH. При высокой температуре пероксид разъедает практически все вещества. Проводились опыты по измерению потери веса тиглями из различных материалов, в которых содержался расплав пероксида натрия. Самым стойким оказался цирконий, за ним - железо, затем никель, затем фарфор. Серебро не попало в четверку лидеров. К сожалению, не помню точно, насколько серебро устойчиво. Там еще было написано про хорошую стойкость Al2O3 и МgO. Но второе место, которое занимает железо, вселяет оптимизм.

Вот, собственно, и все.

Вам также будет интересно:

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах
Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса...
Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153
Доброго дня всем! Вот смотрю схемы в Интернете блоков питания импульсных и... И не понимаю!...
Стробоскоп для выставления зажигания своими руками Стробоскоп автомобильный для зажигания своими руками
Со стробоскопом выставлять зажигание на карбюраторном моторе всегда намного удобнее, чем...
Кто придумал Паровой двигатель - Когда Изобрели?
Определение Паровая машина - двигатель внешнего сгорания, который преобразовывает энергию...
Многие ведущие зарубежные автопроизводители ежегодно выпускают усовершенствованные...