Автомобильный - Mirtaxibel

Как заводится зимой в сильные морозы

Как заправить зажигалку бензином

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Красная Крета — яркий и стильный на дороге Грета черный цвет

Как изменить вращение асинхронного электродвигателя

Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз

Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом

Преимущества приобретения авто в лизинг

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Основные неисправности кондиционера и пути их устранения

Расчет установки утилизации теплоты отходящих газов технологической печи Экономия топлива при использовании теплоты отходящих газов

Как определить неисправность стойки стабилизатора — отвечают эксперты Признаки умирания амортизаторов

Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153

Стробоскоп для выставления зажигания своими руками Стробоскоп автомобильный для зажигания своими руками

Математическая модель работы рулевой машины. Математическая модель системы управления


Размещено на https://сайт/

Техническое задание

Проектирование исполнительного двигателя системы газового рулевого привода

1. Общие сведения

3. Математические модели газовых и пневматических рулевых приводов

4. Принципиальная схема рулевого тракта

5. Проектирование газовой силовой системы управления

6. Моделирование

Литература

Техническое задание

Спроектировать газовую силовую систему управления, работающую в пропорциональном режиме. Входной сигнал гармонический с частотой в диапазоне. В диапазоне частот входного сигнала во всех режимах работы система должна обеспечивать отработку полезного сигналя с амплитудой не менее д 0 при фазовых сдвигах, не превышающих фазовые сдвиги апериодического эвена с постоянной времени Т ГССУ.

Основные исходные данные:

а)коэффициент передача системы;

б)максимальный угол отклонения рулевых органов д т;

в)расчетное время функционирования;

г)величины, характеризующие динамические свойства системы; в простейшем варианте сюда входят значения предельной частоты входного сигнала щ 0 , амплитуда д 0 отрабатываемого приводом сигнала на частоте щ 0 (величина обычно задается в пределах 0,8 ... 1,0), значение постоянной времени эквивалентного апериодического звена Т ГСУ;

д)нагрузки на рулевых органах - инерционная нагрузка, задаваемая моментом инерции нагрузки J Н;

Коэффициент трения f;

Коэффициент шарнирного момента т ш.

Если коэффициент т ш. изменяется во времени, то может быть задан график его изменения во времени. В простейшем случае задают экстремальные значения этого коэффициента. Обычно максимальное значение отрицательной нагрузки соответствует начальному моменту функционирования; в конечный момент пропорциональная нагрузка зачастую положительная и тоже имеет экстремальную жесткость.

Таблица начальных параметров моделирования

№ варианта

Параметры ТЗ

Момент нагрузки, Нм

Угол максимальный, рад

Амплитуда Отклонения РО, рад

Максимальная частота входного сигнала, Гц/амплитуда,в

Коэффициент трения Н*с/м

Масса подвижных частей РО кг

Давление газа в ИСГ бар

Температура газа в ИСГ град С

Проектирование исполнительного двигателя системы газового рулевого привода

рулевой двигатель пневматический газовый

1. Общие сведения

Пневматические и газовые исполнительные устройства находят широкое применение в системах управления малогабаритными летательными аппаратами. Альтернативой традиционным системам с первичными источниками энергии исполнительных устройств - систем с газобаллонными источниками сжатых газов и систем с предварительной газификацией различных веществ, явилось создание устройств, относящихся к принципиально новому семейству - систем воздушно-динамических рулевых приводов.

Исполнительные устройства данного класса являются сложными следящими системы автоматического управления, которые в составе изделия в процессе хранения, транспортировании и эксплуатации подвергаются существенному воздействию климатических, механических других внешних воздействий. Отмеченные выше особенности условий применения и режимов эксплуатации, учет которых обязателен при разработке новых систем позволяют отнести их к классу мехатронных систем .

При выборе типа и определении параметров системы рулевого привода БУЛА обычно исходят из двух способов управления: аэродинамического и газодинамического. В системах управления, реализующих первый способ, управляющее усилие создается за счет активного воздействия на аэродинамические рули скоростного напора набегающего потока воздуха. Рулевые приводы предназначены для преобразования электрических сигналов управления в механическое перемещение аэродинамических рулей, жестко связанных с подвижными частями исполнительных двигателей приводов.

Исполнительный двигатель преодолевает действующие на рули шарнирные нагрузки, обеспечивая необходимую скорость и необходимое ускорение при отработке заданных входных сигналов с требуемой динамической точностью.

К системам управления, реализующим второй способ, относятся:

Автономные газореактивные системы автоматического управления;

Системы управления вектором тяги (СУВТ).

В настоящее время для первого способа управления широко применяются устройства, в которых в качестве источника энергии используется газ высокого давления. К данному классу устройств, например, можно отнести:

Системы рулевых приводов с газобаллонными источниками сжатого воздуха или воздушно-газовой смеси;

Системы с пороховыми аккумуляторами давления или с другими источниками рабочего тела, являющегося продуктом предварительной газификации твердых и жидких веществ.

Такие системы обладают высокими динамическими характеристиками. Отмеченное достоинство вызывает к таким системам рулевых приводов большой интерес со стороны разработчиков и делают их важными объектами теоретического и экспериментального исследования.

Создание высокотехнологичных рулевых приводов систем управления БУЛА традиционно связано с поиском новых схемных и конструктивных решений. Особым, радикальным решением проблемы создания высокотехнологичных рулевых приводов явилось использование для управления энергии, обтекающего ракету воздушного потока. Это привело к созданию нового, особого класса исполнительных устройств - воздушно-динамических рулевых приводов (ВДРП), использующих в качестве первичного источника энергии, энергию набегающего потока газа, т.е. кинетическую энергию БУЛА.

Настоящие указания посвящены вопросам устройства, применения и методам исследования и проектирования исполнительных мехатронных модулей систем управления малогабаритных БУЛА. В нем отражены сведения, которые в первую очередь могут быть полезными для студентов специальностей «Мехатроника» и «Системы автоматического управления летательными аппаратами».

2. Устройство исполнительных двигателей

Системы рулевого привода включают следующие функциональные элементы.

1. Устройства, обеспечивающие создание силового воздействия на органы управления:

Источники питания - первичные источники энергии (источники сжатых газов и источники электрической энергии - батареи и турбогенераторные источники электрической энергии);

Исполнительные двигатели, кинематически связанные с органами управления, и элементы энергетических магистралей - например, воздушные и газовые фильтры, обратные и предохранительные клапаны, регуляторы давления газа систем с газобаллонными источниками сжатого газа, регуляторы скорости горения пороховых аккумуляторов давления, устройства забора и сброса воздуха ВДРП и т.п.

2. Функциональные элементы, которые устанавливают соответствие формируемого в системе управления управляющего сигнала и необходимого силового воздействия - преобразователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датчики.

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управляющую системы (рис. 1.2).

Рис. 1.2. Схема рулевого привода летательного аппарата

Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления. Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления. Несмотря на несколько условный характер выделения силовой и управляющей систем, что связано с необходимостью включения ряда функциональных: элементов рулевого привода как в силовую, так и в управляющую систему, практическая полезность такого обособления заключается в возможности разнопланового представления рулевого привода при решении различных задач в процессе разработки.

В системе газового рулевого привода можно выделить следующие подсистемы:

Первичный источник энергии;

Исполнительный двигатель;

Газораспределительное устройство с управляющим электромеханическим преобразователем;

Электрическая управляющая система - усилители, корректирующие устройства, генераторы вынуждающих колебаний и т.п.;

Первичные преобразователи - датчики линейных и угловых перемещений подвижных частей механических подсистем.

Для классификации систем газовых рулевых приводов, в общем случае, могут быть использованы следующие классификационные признаки:

Тип силовой системы, т.е. тип первичного источника энергии;

Принцип управления аэродинамическими рулями;

Тип контура управления для устройств с пропорциональным движением рулевых органов;

Тип исполнительного двигателя;

Тип распределительного устройства и управляющего электромеханического преобразователя.

1. Системы с газобаллонным источником сжатого газа. Источником газа высокого давления является воздушно-арматурный блок, в состав которого помимо баллона со сжатым воздухом или воздушно-гелиевой смесью входит предохранительная, запорно-распределительная и регулирующая газовая арматура и арматура для заправки и контроля давления в баллоне. В технической литературе такие системы часто называют «пневматическими».

2. Системы с пороховым аккумулятором давления. Источником газа высокого давления в данном случае является твердотопливный пороховой заряд специальной конструкции, обеспечивающий постоянную производительность рабочего тела - продуктов горения заряда, имеющих высокую температуру. В состав таких систем помимо непосредственно источника газа и устройства включения источника газа в работу, могут входить регуляторы скорости горения топлива и предохранительные устройства. В технической литературе при описании таких систем часто используется термин «горяче-газовые» или просто «газовые».

3. Электромагнитные рулевые приводы. Основой таких устройств обычно является электромеханический преобразователь нейтрального типа, который непосредственно осуществляет заданное движение аэродинамических рулевых органов.

Исполнительный двигатель - устройство преобразующее энергию сжатого газа в перемещение рулевых органов, преодолевающее усилие, создаваемое воздушным потоком обтекающего БУЛА.

По конструктивному исполнению, можно выделить следующие группы исполнительных двигателей.

1. Поршневые - одностороннего и двухстороннего действия. Устройства, наиболее часто применяемые, как в специальной технике, так и в системах автоматизации технологических процессов.

Рис. 1. Исполнительный двигатель СГРП закрытого типа - поршневой, с одним силовым цилиндром.

Рис.2. Исполнительный двигатель СГРП закрытого типа - с двумя силовыми цилиндрами.

Работой исполнительного двигателя управляет газовое распределительное устройство (ГРУ).

Назначение ГРУ заключается в попеременном сообщении рабочих полостей исполнительного двигателя привода с источником сжатого газа либо с окружающей средой (атмосферой бортового отсека привода). По характеру решаемой коммутационной задачи, ГРУ в общем случае делятся на устройства:

С управлением «на входе» - изменяются площади впускных отверстий в рабочие полости;

С управлением «на выходе» - изменяются площади выпускных отверстий из рабочих полостей;

С управлением «на входе и выходе» - изменяются площади как впускных, так и выпускных отверстий.

3. Математические модели газовых и пневматических рулевых приводов

При математическом моделировании системы рулевого газового привода (СРГП), как элемента системы управления БУЛА, функционирующего в обтекающем его потоке воздуха, областью исследований является совокупность геометрических, электромеханических параметров и параметров рабочего тела - воздуха или другого сжатого газа, а также функции состояния электромеханических, аэрогазодинамических процессов и процессов управления, протекающих во всем многообразии причинно-следственных связей. При имеющих место преобразованиях одних видов энергии в другие, наличии распределенных полей и структурно - сложного представления реальных механизмов в рассматриваемой физической области исследований создание математических моделей, обеспечивающих требуемую степень достоверности инженерных расчетов, достигается за счет введения теоретически и экспериментально обоснованных идеализаций. Уровень идеализации определяется целями создаваемого математического обеспечения.

Математическая модель рулевого привода:

p 1 , р 2 - давление газа в полости 1 или 2 рулевого привода,

S П - площадь поршня рулевого привода,

Т 1 , Т 2 - температура газа в полости 1 или 2 рулевого привода,

Т сп - температура стенок рулевого привода,

V - скорость поршня рулевого привода,

F пр - сила поджатия пружины,

h - коэффициент вязкого трения,

Коэффициент шарнирной нагрузки,

М - приведенная масса подвижных частей.

Рис. 3 Типовые графики переходных прочцессов.

4. Принципиальная схема рулевого тракта

Рулевой тракт газовой силовой системы управления может строиться с механической, кинематической, электрической обратной связью или не иметь главной обратной связи. В последнем случае привод обычно работает в релейном режиме ("да - нет"), а при наличии обратной связи - в пропорциональном. В настоящей разработке будут рассматриваться рулевые тракты с электрической обратной связью. Сигнал рассогласования в этих трактах может усиливаться либо линейным, либо релейным усилителем.

Принципиальная схема рулевого тракта с линейным усилителем дается на рис. 5.

Рис. 4. Схема рулевого тракта

На схеме обозначено: W Ф (р), W З (р), W п (р), W ос (р) -передаточные функции корректирующего фильтра, электромеханического преобразователя, привода, цепи обратной связи соответственно. Коэффициент усиления линейного усилителя в данной схеме входит множителем в коэффициент первачи ЭМП.

Выбор параметров привода производится таким образом, чтобы в заданном диапазоне частот и амплитуд отрабатываемого сигнала не имело место ограничение по координатам х и Х. В связи с этим нелинейности в виде ограничений по этим величинам при формировании рулевого тракта не учитываются.

5. Проектирование газовой силовой системы управления

Методика проектирования

Выбирается тип исполнительного привода и принципиальная схема рулевого тракта. Тип привода определяют исходя ив требований и условий эксплуатации. При длительном времени функционирования и высоких значениях температуры Т р предпочтительнее схема привода с регулированием на выходе. Для выбора принципиальной схемы целесообразно провести предварительную проработку различных схем, оценить приближенно их возможности (эксплуатационные, динамические, массу, габариты) и выбрать наилучший вариант. Такая задача, состоящая в приближенном расчете характеристик ГССУ различных схем, должна решаться на начальном этане разработки системы. В некоторых случаях тип принципиальной схемы может быть однозначно выбран уже на начальной стадии работ и оговорен в техническом задании.

Рассчитываются обобщенные параметры привода. Методика этого расчёта определяется типом выбранной принципиальной схемы рулевого тракта. Здесь излагается методика применительно к рулевому тракту с электрической обратной связью:

а) выбирается величина нагрузочного коэффициента у:

Максимальное значение коэффициента шарнирной нагрузки;

М т - максимальный момент, создаваемый приводом,

где l - плечо механической передачи.

От выбора величины у зависит потребная мощность привода. Оптимальное значение у опт, соответствующее минимуму потребной мощности привода может быть определено как решение кубического уравнения

Численное значение у опт обычно лежит в пределах 0,55 ... 0,7. При атом величина назначается в диапазоне 1,2 ? 1,3. Величина отношения и зависят от типа выбранного исполнительного привода. Так. для приводов с газораспределителем типа сопло - заслонка, ; для приводов со струйной трубкой, .

Параметр q в зависимости для величины должен соответствовать режиму I. Его величина определяется либо по результатам теплового расчета, либо по данным экспериментов с аналитичными устройствами. Здесь будем полагать, что закон изменения параметра q по времени задан в виде аппроксимирующей зависимости для различных значений температуры окружающей среды.

Величина б 0 - амплитуда движения якоря ЭМП для рулевого тракта с линейный усилителем принимается равной у м, т.е. , а для систем с релейным усилителем, работающих в режиме ШИМ на распределительном устройстве величина принимается в диапазоне 0,7 ? 0,8;

б) при выбранном значении величины у вычисляется максимальный момент, развиваемый приводом:

в) определяется необходимое значение угловой скорости Щ т, обеспечиваемой приводом.

Величина Щ т находится из условий отработки газовым приводом гармонического сигнала частотой щ т и амплитудой д 0 . Амплитуда движения якоря ЭМП б 0 при этом принимается такой же, как в предыдущем расчете.

В области низких частот () динамика привода при относительно малой инерционности механического звена может быть описана апериодическим звеном. Можно получить следящие выражения:

Для апериодического звена

Из последней зависимости после преобразований получим формулу для расчета потребного значения Щ max:

Рассчитываются конструктивные параметры приводов.

Определяются плечо механической передачи l, диаметр поршня силового цилиндра D П, величина свободного хода привода Х т. .

Рис.5 Конструктивная схема ИД.

При определении плеча l нужно задаться соотношением между свободным ходом поршня и его диаметром.

Из соображений компактности разрабатываемой конструкции силового цилиндра можно рекомендовать соотношение.

При Х = Х т максимальный момент, создаваемый приводом, должен в раз превосходить максимальный момент от нагрузки, т.е.

С учетом принятого соотношения из последнего равенства получим зависимость

Максимальный перепад давлений в полостях силового цилиндра Др тах зависит от величины р р, типа и соотношений геометрических размеров распределительного устройства, а также от интенсивности теплообмена в полостях. При расчетах величины l можно ориентировочно принимать для приводов с газораспределителем типа сопло-заслонка Др тах = (0,55 ? 0,65) р р, при использовании струйникого распределителя Др тах = (0,65 ? 0,75) р р.

При расчете величины l величина Др тах должна соответствовать режиму I.

При относительно малых значениях д тах

В процессе расчетов все линейные геометрические размеры должны округляться в соответствии с требованиями стандартов.

Рассчитываться параметры газораспределительного устройства привода. Этот расчет ведется из условия, чтобы в наихудшем случае, т.е. в режиме I, обеспечивалась скорость привода не ниже, где Щ т - значение угловой скорости. Здесь будут даны методики расчетов геометрических параметров для двух конструктивных разновидностей газораспределителей: со струйной трубкой и с соплом и заслонкой. Первый из названных распределителей реализует регулирование газового потока по принципу "на входе и выходе". В этом случае максимальная установившаяся скорость привода определяется зависимостью

Из чего следует

При расчетах по зависимости значения Т р и q должны соответствовать режиму I.

Учитывая характерные для данного распределителя соотношения размеров, принимают, .

Рациональное соотношение площадей с и а обеспечивает наилучшие энергетические возможности привода и лежит в пределах. Из этих соображений находится величина С. Рассчитав величины а, с, следует определить основные геометрические размеры распределителя.

Рис. 6. Расчетная схема газораспределителя «струйная трубка».

Диаметр приемного окна распределителя определится из условия

где коэффициент расхода м = 0,75 … 0,85.

Величина максимального перемещения конца струйной трубки, а длинна струйной трубки.

При известном значении x m вычисляют величины b и d.

Газораспределительное устройство типа "сопло - заслонка" реализует регулирование газового потока "на выходе".

Для этого случая

Из этого следует:

При расчетах следует принимать отношение. Величины Т р и q соответствуют режиму I.

Рис. 7 Расчетная схема газораспределителя «сопло-заслонка».

Диаметр сопла d c выбирается таким образом, чтобы эффективная площадь была не менее чем в 2 раза больше максимальной площади выпускного отверстия:

При выбранном значении d c находят величину b: b = мрd c ; вычисляют максимальное значение координаты х т и величину

После разработки конструкции газораспределительного устройства определяются нагрузки на его подвижных частях и проектируются или выбираются ЭМП. Определяется также потребный расход рабочего тела, что необходимо для проектирования (или выбора) источника питания.

При известных конструктивных и эксплуатационных параметрах привода могут быть определены по зависимости (I) параметры его струйной схемы как для режима I, так и дал режима II, после чего возможно формирование рулевого тракта.

Формирование контура рулевого тракта проводится с учетом экстремальных режимов его работы. На первом этапе формирования строятся частотные характеристики разомкнутого контура в режиме I (величина коэффициента k 3 временно неизвестна).

Исходя из требования по динамической точности замкнутого контура находим допустимую величину фазового сдвига на частоте щ 0:

ц з (щ 0) = arctg щ 0 Т ГССУ.

При известном значении величины фазового сдвига для разомкнутого контура ц р (щ 0), определенного в результате построения частотных характеристик, и определенном значении ц з (щ 0) находим требуемое значение амплитудной характеристики А р (щ 0) разомкнутой системы на частоте щ 0 . Для этой цели удобно использовать номограмму замыкания. После этого амплитудная характеристика контура в режиме I оказывавшей однозначно определенной, а следовательно, определяется и значение коэффициента разомкнутого контура К р.

Поскольку в контур еще не введен корректирующий фильтр, величина К р определяется зависимостью К р = k э K n k oc . Величина коэффициента обратной связи может быть определена по коэффициенту передачи замкнутого контура: . Тогда можно вычислить значение коэффициента k э: , а в дальнейшем рассчитать и требуемое значение коэффициента усиления усилителя напряжения

6. Моделирование

Используя данные из таблицы, проведём моделирование системы сначала в программе PROEKT_ST.pas. Рассчитав таким образом пригодность параметров системы, продолжим моделирование в PRIVODKR.pas и рассчитаем в ней время срабатывания.

Заполним таблицы на основании полученных параметров:

Повысим температуру:

Понизим давление:

Повысим температуру (при пониженном давлении)

Основная литература

1. Горячев О.В. Основы теории компьютерного управления: учеб. пособие / О. В. Горячев, С. А. Руднев. - Тула: Изд-во ТулГУ, 2008 .-- 220 с.(10 экз.)

2. Пупков, К.А. Методы классической и современной теории автоматического управления: учебник для вузов: в 5 т. Т.5. Методы современной теории автоматического управления / К.А. Пупков [и др.]; под ред. К.А. Пупкова, Н.Д. Егупова. -- 2-е изд., перераб. и доп. -- М. : МГТУ им. Баумана, 2004. -- 784 с.(12 экз.)

3. Чемоданов, Б.К. Следящие приводы: в 3 т. Т.2. Электрические следящие приводы / Е.С.Блейз, В.Н.Бродовский, В.А.Введенский и др. / Под ред.Б.К.Чемоданова. -- 2-е изд., перераб. и доп. -- М. : МГТУ им.Н.Э.Баумана, 2003. -- 878с. (25 экз)

4. Электромеханические системы: учеб. пособие/Г.П. Елецкая, Н.С. Илюхина, А.П. Панков. -Тула: Изд-во ТулГУ, 2009.-215 с.

5. Геращенко, А.Н. Пневматические, гидравлические и электрические приводы летательных аппаратов на основе волновых исполнительных механизмов: учеб.пособие для вузов / А.Н.Геращенко, С.Л.Самсонович;под ред.А.М.Матвеенко.-- М. : Машиностроение, 2006 .-- 392с. (10 экз)

6. Наземцев, А.С. Гидравлические и пневматические системы. Ч.1, Пневматические приводы и средства автоматизации: Учеб.пособие / А.С.Наземцев.-- М. : Форум, 2004 .-- 240с. (7 экз)

Подобные документы

    Проект рулевого привода для малогабаритных летательных аппаратов, полет которых происходит в плотных слоях атмосферы. Технические требования к составным частям автоколебательной системы рулевого привода. Конструкции и принцип действия рулевого привода.

    дипломная работа , добавлен 10.09.2010

    Обоснование выбора структуры привода, составление его математической модели. Расчет конструктивных параметров, управляющего электромагнита и динамических характеристик привода, тепловой расчет конструкции. Технологический процесс сборки рулевой машины.

    дипломная работа , добавлен 10.09.2010

    Общие сведения об автомобиле. Проектирование рулевого управления, описание его назначения и основных требований. Обоснование выбора реечного управления и определение параметров рулевой трапеции. Расчет параметров зацепления механизма "шестерня-рейка".

    дипломная работа , добавлен 13.03.2011

    Проектирование стенда для разборки и сборки рулевого управления легкового автомобиля. Описания стенда для ремонта карданных валов и рулевых управлений. Определение стоимости проекта. Подбор материала. Расчет затрат на покупку материалов и создание стенда.

    курсовая работа , добавлен 12.03.2015

    Обзор приводов и систем управления путевых машин. Расчет параметров привода транспортера. Разработка принципиальной гидравлической схемы машины. Расчет параметров и подбор элементов гидропривода, механических компонентов привода и электродвигателей.

    курсовая работа , добавлен 19.04.2011

    Выбор элементов следящего привода: исполнительного двигателя, электромашинного усилителя, чувствительного элемента. Синтез системы управления методом типовых нормированных характеристических уравнений. Исследование и анализ разработанной системы.

    курсовая работа , добавлен 07.09.2014

    Проектирование и расчет привода, зубчатой передачи и узла привода. Силовая схема привода. Проверочный расчет подшипников качения, промежуточного вала и шпоночных соединений. Выбор смазочных материалов. Построение допусков для соединений основных деталей.

    курсовая работа , добавлен 29.07.2010

    Обзор химического состава, механических, технологических и эксплуатационных свойств легированной стали, из которой изготовлена деталь. Технологический маршрут ремонта вала сошки рулевого механизма с роликом. Выбор оборудования и технологической оснастки.

    курсовая работа , добавлен 07.02.2016

    Кинематический и энергетический расчет привода. Подбор электродвигателя, расчет открытой передачи. Проверочный расчет шпоночных соединений. Описание системы сборки, смазки и регулировки узлов привода. Проектирование опорной конструкции привода.

    курсовая работа , добавлен 06.04.2014

    Описание автоматического цикла сверлильного станка. Подбор необходимых элементов электрической принципиальной схемы для управления технологическим процессом: с использованием алгебры логики и без ее применения. Логические функции исполнительных устройств.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Галлямов Шамиль Рашитович. Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования: диссертация... кандидата технических наук: 05.04.13 / Галлямов Шамиль Рашитович; [Место защиты: Уфим. гос. авиац.-техн. ун-т].- Уфа, 2009.- 198 с.: ил. РГБ ОД, 61 10-5/810

Введение

Глава 1. Аналитический обзор РП ЛА 11

1.1 Состояние и перспективы развития РП ЛА 11

1.2 Анализ конструктивно-компоновочных схем РП 14

1.3 Анализ математических моделей электрогидравлических РП 24

1.4 Актуальность исследования, цель и задачи работы 41

Глава 2. Математическая модель РП с СГРМ 45

2.1 Особенности математического моделирования СГРМ 45

2.2 Влияние основных нелинейностей ЭГУ на характеристики РМ 56

2.3 Нелинейная математическая модель РП 64

2.4 Анализ результатов численного моделирования РП 81

Глава 3. Повышение качества динамических характеристик системы рулевой привод-орган управления 93

3.1 Особенности эксплуатации РП и определение факторов, влияющих на показатели качества работы 93

3.2 Имитационное моделирование СГУ в пакете Ansys CFX 111

3.3 Влияние жёсткости силовой проводки на характеристики РП 122

Глава 4. Экспериментальные исследования РП ЛА 140

4.1 Экспериментальный стенд для исследования РП Л А 140

4.2 Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА 158

4.3 Методика расчёта РП с использованием имитационного моделирования 163

4.4 Сравнительный анализ результатов численного моделирования и экспериментальных исследований РП ЛА 171

Основные результаты и выводы 178

Библиографический список 182

Введение к работе

Актуальность темы

Усовершенствование летательных аппаратов (ЛА) влечёт за собой повышение требований по надёжности, быстродействию и долговечности рулевых приводов (РП), работающих в жёстких условиях эксплуатации. Научные и производственные организации как за рубежом, так и в отечественной промышленности ведут исследования по совершенствованию РП и устройств, удовлетворяющих условиям их работы на ЛА.

РП ЛА представляет собой набор электрогидравлических и механических устройств, позволяющих с высоким быстродействием (время выхода на режим составляет менее 0.6 с.) и точностью (величина перерегулирования составляет не более 10%) развивать требуемые характеристики. Функционирование РП ЛА происходит в достаточно сложных условиях эксплуатации: воздействие вибрационных нагрузок, резкие воздействия при отстыковке ступеней ракеты, нелинейные характеристики сил трения тяг и качалок и сил инерции поворотного управляющего сопла с постоянно изменяющимся шарнирным моментом, сложные климатические условия и проблемы длительного хранения.

Максимально возможные тактико-технические характеристики беспилотных ЛА достигаются, в том числе, благодаря многочисленным конструкторским и исследовательским работам, к которым можно отнести проведение стендовых испытаний и имитационное моделирование РП. Имитационное моделирование РП с применением современных пакетов математического моделирования и С4і>проектирования позволяет снизить временные и финансовые затраты при разработке и последующей доводке РП беспилотных ЛА, исключая метод проб и ошибок. Проведение экспериментальных исследований позволяет выполнить анализ соответствия результатов численного моделирования на адекватность реальному объекту.

В данной работе разработана имитационная модель РП ЛА по результатам обработки и обобщения экспериментальных данных, полученных в ОАО «Государственный ракетный центр им. академика В.П. Макеева» и в учебно-научном инновационном центре «Гидропневмоавтоматика» на кафедре прикладной гидромеханики Уфимского государственного авиационного технического университета.

Цель и задачи работы

Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования.

Задачи

    Разработка математической модели РП и анализ результатов численного моделирования;

    Проведение экспериментальных исследований РП и сравнение их результатов с результатами численного моделирования;

4. Разработка методики расчёта с применением имитационной модели РПЛА.

Методы исследования базируются на фундаментальных методах математического моделирования физических процессов, происходящих в РП ЛА в процессе эксплуатации, методах статистического анализа экспериментальных характеристик РП и методах вычислительного эксперимента.

Научная новизна основных результатов работы

    Впервые в математической модели РП ЛА со струйным гидравлическим усилителем (СГУ) предложено использовать нелинейную модель люфта в механической передаче и эмпирическую модель гистерезиса характеристики управления электромеханического преобразователя, что позволило повысить достоверность результатов численного моделирования.

    Впервые была решена обратная задача по влиянию нежёсткости силовой проводки на изменение гидродинамического момента обратных струй, действующих на струйную трубку, вследствие чего уменьшается зона устойчивости РП. В результате проведённых исследований были получены рекомендации по снижению гидродинамического момента обратной струи.

    Впервые был определён диапазон изменения коэффициента передачи РП ЛА, при котором наблюдается его устойчивая работа. Анализ результатов численного моделирования и результатов экспериментальных исследований позволили выявить зону устойчивости РП ЛА как функцию от жёсткости силовой проводки и параметров РМ.

Практическая значимость заключается в том, что разработанная методика расчёта РП ЛА позволяет исследовать устойчивость, точность и быстродействие с учётом действующих на него эксплуатационных нагрузок. Комплекс прикладных программ, выполненных в математическом пакете, позволяет провести численное исследование имитационной модели рулевого привода и сравнить полученные результаты с экспериментальными данными.

На защиту выносятся

    Математическая модель РП ЛА;

    Результаты численного исследования имитационной модели привода;

    Результаты экспериментальных исследований РП ЛА;

    Новая схема струйного гидравлического распределителя (СГР), позволяющая увеличить область устойчивости, за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

Апробация работы

Основные теоретические положения и практические результаты работы докладывались и обсуждались на всероссийской молодёжной научно-технической конференции «Проблемы современного машиностроения» (г. Уфа 2004 г.), на международной конференции «Глобальный научный потенциал» (г. Тамбов 2006 г.), на Российской научно-технической конференции, посвященной 80-летию со дня рождения чл.-кор. РАН, профессора P.P. Мавлютова «Мавлютовские чтения» (г. Уфа 2006 г.), на конкурсе молодых специалистов

авиационно-космической отрасли (Москва, ТІШ РФ, комитет по развитию авиационно-космической техники, 2008).

Основанием для выполнения работы является план исследований госбюджетной НИР «Исследование теплофизических и гидродинамических процессов и разработка теории перспективных энергонапряженных двигателей и энергетических установок» (2008-2009 гг.), № 01200802934, Государственные контракты № ИЗ 17 от 28.07.2009 «Разработка методов расчета и совершенствование рулевых приводов ракетных двигателей» и №П934 от 20.08.2009 «Электрогидравлическая система управления регулируемой двигательной установкой твёрдого топлива многократного включения» по направлению «Ракетостроение» федеральной целевой программы «Научные и педагогические кадры инновационной России» на 2009-2013 годы.

Публикации

Основные результаты исследований по теме диссертации представлены в 16 публикациях, в том числе в 3 статьях в рекомендованных ВАК изданиях.

Структура и объем работы

Анализ математических моделей электрогидравлических РП

В настоящее время существует достаточно много исследований РП, которые используется в разных областях отечественного машиностроения .

Среди научных трудов, которые были посвящены исследованиям РП ЛА можно выделить таких авторов как А.И. Баженов, С.А. Ермаков, В.А. Корнилов, В.В. Малышев, В.А. Полковников, В.А. Чащин - Московский авиационный университет, Д.Н. Попов, В.Ф. Казмиренко, И.А. Абаринова, В.Н. Пильгунов, В.М. Фомичёв, М.Н. Жарков, В.И. Гониодский, А.С. Кочергин, И.С. Шумилов, А.Н. Густомясов, Г.Ю. Маландин, В.А. Введенский, СЕ. Семёнов, А.Б. Андреев, Н.Г. Сосновский, М.В. Сиухин, В.Я. Бочаров - МВТУ им. Баумана г. Москва, Э.Г. Гимранов, В.А. Целищев, Р.А. Сунарчин, А.В. Месропян, Ю.К. Кириллов, A.M. Русак - УГАТУ г. Уфа и работы других авторов.

В , рассматривается влияние упругости проводки на характеристики управляемости. Авторами были получены основные теоретические зависимости, которые учитывают параметры, среди которых можно выделить коэффициент передачи силовой проводки, жёсткость проводки, трение всей проводки при её равномерном движении, люфт в силовой проводки и др. Следует отметить, что расчёт величины жёсткости проводки представляет достаточно трудную задачу, так как жёсткость зависит от большинства числа факторов, учесть которые при расчёте весьма сложно. Поэтому расчёт жёсткости авторы предлагают вести на основании расчёта и анализа экспериментальных материалов. Также можно выделить вопрос, которые авторы достаточно хорошо раскрыли, о динамических характеристиках механической проводки. Здесь представлены расчётная схема механической проводки (Рисунок 1.14) и математическая модель механической проводки.

Коэффициент передачи проводки - отношение перемещения выходного звена проводки к перемещению её входного звена . Увеличение коэффициента передачи ведёт к уменьшению приведённых к входному звену проводки люфтов и увеличению приведённого трения, увеличению потребных объёмов для размещения конструкции проводки и её веса. Существенное влияние на трение, люфт и жёсткость механической проводки оказывают также местные коэффициенты передач проводки, т.е. коэффициенты передачи отельных участков проводки. Например, если имеются элементы проводки, где сосредоточено трение, то для получения меньшего трения на входном звене проводке целесообразно уменьшить местный коэффициент передачи между этим элементом и входным звеном проводки, а затем произвести увеличение коэффициента передачи на участке от указанного элемента до выходного звена проводки.

Сила сухого трения проводки Frpl с учётом инерционной нагрузки, действующей на подшипники, представлена в следующей зависимости: где л - КПД системы передачи, установленного в проводке, FTn сухого трения проводки. Схема, представленная на рисунке 1.14, поясняет функциональные связи в самой проводке и между проводкой и присоединёнными к ней механизмами. Решение в аналитическом виде и в численном виде уравнений (1) - (3) в данном источнике не представлены, так как не было возможности численно исследовать задачи такого класса. Поэтому авторы применяют метод преобразования Лапласа для математического моделирования, которое сводится к определению степени влияния на амплитудно-фазовые частотные характеристики (АФЧХ) проводки следующих параметров: а) коэффициента полезного действия проводки, характеризующего величину силы сухого трения, пропорционального инерционной нагрузке; б) силы сухого трения в проводке FTn; в) силы сухого трения золотника FTP2; г) величины люфта в проводке А. На рисунке 1.15 представлены АФЧХ механической проводки, где a) FTn = const, А = const, FTP2 = const; б) A = const, FTP2 = const; в) FTn = const, A = const. Можно отметить, что основной демпфирующей силой в этом диапазоне частот входных сигналов следует считать силу сухого трения, пропорциональную инерционной нагрузке в проводке. Этот эффект с особой очевидностью следует из рисунка 1.15 а), на котором видно, что изменение величины КПД проводки приводит к увеличению подъёма АФЧХ на резонансной частоте в несколько раз. Силы сухого трения оказывают заметное влияние на фазовые характеристики проводки в области низких частот входных сигналов. Так, например, увеличение сил сухого трения проводки и в золотнике приводит к относительному росту фазового запаздывания в этом диапазоне частот. В области частот, лежащих выше резонансной, характер влияния на фазовые характеристики противоположен рассмотренному, для правильного отображения динамических свойств проводки необходимо учитывать, наряду с сухим трением в проводке и трением в золотниках, силу сухого трения, пропорциональную инерционной нагрузке.

Влияние основных нелинейностей ЭГУ на характеристики РМ

В исследованиях не представлено результатов численного моделирования подобных математических моделей (1.13-1.19). Все динамические характеристики оценивались по передаточным функциям системы. Так в представлены передаточные функции динамической жёсткости рулевых приводов, полученные с учётом упругости жидкости, внутренней обратной связи по нагрузке, межполосных перетечек рабочей жидкости, жёсткости проводки между РП, жёсткости опоры привода, при расположении поршня в среднем положении.

На основании проведённых исследований отмечается, что амплитудная частотная характеристика динамической жёсткости при частоте возмущающей силы определяется величинами жёсткости ряда элементов (опоры, связи между рулевым приводом и рулём), упругостью рабочей жидкости и конструкции рулевого привода и не зависит от перетечек рабочей жидкости, внутренней обратной связи по нагрузке, а также от коэффициента обратной связи.

Статическая жёсткость определяется коэффициентом обратной связи, величинами жёсткости руля, системы между РП и межполосными перетечками рабочей жидкости. Упругость рабочей жидкости не влияет на статическую жёсткость привода.

Создание баллистических ракет морского базирования, стартующих из подводного положения, потребовало от разработчиков ОАО «ГРЦ им. академика В.П. Макеева» решения множества принципиально новых технических и организационных проблем, связанных с исключительно жесткими требованиями по плотности компоновки, обеспечением возможности пуска ракет из подводного и надводного положения, особенностями гидродинамических процессов движения ракеты в шахте подводной лодки при работающем ЖРД, продолжительным временем хранения ракет, более жесткими требованиями к РП морских баллистических ракет и, в частности, к габаритам и массе при отсутствии возможности проверки правильности их функционирования на протяжении всего гарантийного срока (более 15 лет), что являлось значительным отличием от условий применения РП в ракетах с наземным стартом.

Проектирование нового типа РМ началось с проведения целенаправленных лабораторных поисковых работ с применением специального масла в качестве рабочего тела вместо газа, которые доказали работоспособность конструкции СГРМ - сопла и струйного распределителя -при рабочем давлении 36...40 атм. Лабораторные испытания подтвердили, что разработанная РМ обладает скоростными и силовыми характеристиками, заданными разработчиком ракеты РСМ-25. Первая СГРМ, развивающая усилие на штоке до 400 кгс, прошла несколько этапов лабораторных конструкторских испытаний в составе РП при огневых стендовых испытаниях ЖРД (см. рисунок 1.21). По согласованию с представителем заказчика СГРМ была допущена для применения в ракете. Златоустовский машиностроительный завод обеспечил подготовку производства, изготовление и установку рулевых машин на ракеты.

В дальнейшем при создании баллистических ракет РСМ-40 и их модификаций, отличавшихся более мощными двигателями и большей массой РО, потребовалось увеличить до 2000 кгс усилие, развиваемое СГРМ. Расчеты свидетельствовали, что при рабочем давлении 36...40 атм. силовые цилиндры СГРМ, способные развить такое усилие, становятся излишне громоздкими и тяжелыми для использования в составе ЛА. Потребовалось изменить конструкцию СГРМ для обеспечения возможности его питания рабочим телом под более высоким давлением, увеличенным до 100...200 атм., но для этого потребовалось выполнить новые теоретические расчеты, провести конструкторские изыскания, организовать десятки и сотни лабораторных испытаний различных вариантов СГРМ.

Для ракеты РСМ-40 было предложено СГРМ ампулизировать и также разместить в баке окислителя первой ступени. Принятое решение в корне изменило конструктивное исполнение РП второй ступени и конструкцию стыка первой и второй ступеней. РП ЖРД второй ступени оказался утопленным в кислоте бака первой ступени. Для повышения герметичности и надежности все стыковые соединения трубопроводов рабочего тела и трубопроводов с электропроводами соединялись автоматической сваркой. Ввиду малых зазоров (до 10 мм.) между деталями в местах сварки отделу В.Г. Крылова пришлось разработать и передать в серию малогабаритные автоматические сварочные аппараты. После проведения проверки СГРМ заправляли отвакуумированным маслом - заваривали заправочные гидроразъёмы и вновь проверяли герметичность.

Испытания РП на всех этапах вели высококлассные специалисты ракетного центра, на которых лежал груз ответственности за тщательную проверку работоспособности конструкции, формирование окончательных выводов и рекомендаций о допуске РП к испытаниям в составе ЛА при бросковых и летных пусках.

На кафедре прикладной гидромеханики УГАТУ была разработана математическая модель СГРМ. Так благодаря работам , который были посвящены исследованиям распространения высоконапорной струи в струйном каскаде, были получены основные теоретические и эмпирические нагрузочные характеристики струйного каскада (см. рисунок 1.22 - рисунок 1.24). Также были получены зависимости коэффициентов восстановления расхода и давления, которые позволяют получить статические характеристики СГРМ: расходная характеристика, нагрузочная характеристика, расходно-перепадная характеристика, характеристика КПД СГРМ.

Влияние жёсткости силовой проводки на характеристики РП

В результате разности двух гидродинамических моментов Мх и М2 возникает гидродинамический момент, который действует справа от струйной трубки при её смещении в левую сторону. В результате расчётов величина гидродинамического момента составила М = 1.59-10-2Нм при смещении струйной трубки на максимальную величину - 2.4 град. (см. рисунок 3.23).

В результате проведённых расчётов гидродинамического момента, действующего на струйную трубку при её смещении можно сделать вывод, что гидродинамическое воздействие может негативно сказаться на характеристиках РМ ЛА при возвратно-поступательном движении струйной трубки. Такая ситуация постоянно возникает при полёте ракеты, особенно когда имеет место знакопеременная статическая нагрузка на выходном звене (ПУС), поэтому необходимо внести изменения в конструкцию струйного каскада для уменьшения гидродинамического момента.

В ходе доводки рулевых машин в ОАО «ГРЦ им. академика В.П. Макеева» были приняты меры по снижению гидродинамического момента и улучшению динамических характеристик РП. Для снижения гидродинамического момента каналы приёмной платы были разведены по разным плоскостям относительно плоскости, в которой движется струйная трубка, поэтому обратная струя в данном случае частично оказывает воздействие на струйную трубку. Разведение каналов приёмной платы не позволили улучшить динамические характеристики. На определённых частотах колебаний движение струйной трубки переходило в неустойчивое состояние по причине возникновения автоколебаний. Чтобы избежать неустойчивого состояния движения струйной трубки, в струйном каскаде был установлен компенсатор гидродинамического воздействия, который хорошо представлен на рисунок 3.24.

В РП ЛА используется смешанный тип жёсткой силовой проводки: управляющее воздействие передаётся возвратно-поступательным движением тяг, работающих на растяжение и сжатие, и вращательным и поворотным движением валов, работающих на кручение. Величина суммарной жёсткости силовой проводки по результатам проведенных экспериментальных исследований (здесь учитывается только механическая жёсткость, как отношение усилия, воздействующего на входное или выходное звено проводки к её продольной деформации) составляет от 107...108 Н/м. На сегодняшний день существует достаточно много работ, посвященных вопросам повышения жёсткости силовой проводки, и её влияние на динамические характеристики РП , в которых рассматриваются, в основном вопросы, связанные с увеличением жёсткости силовой проводки ЛА за счёт изменения конструктивных элементов. В качестве примера в представлены некоторые конструктивные примеры по повышению жёсткости силовой проводки.

При анализе влияния подобного явления на динамические характеристики РП было сделано допущение, что увеличение зазора люфта прямо пропорционально увеличению жёсткости силовой проводки. Данное допущение было сделано при анализе экспериментальных данных, полученных в ОАО «ГРЦ им. академика В.П. Макеева». При изменении жесткости силовой проводки в диапазоне от 107 Н/м до 108Н/м, значение зазора люфта изменяется соответственно в пределах А = 0..2-4 м.

Для исследования данного явления на характеристики РП используется разработанная математическая модель, представленная в главе 2 п. 2.3 (2.67) - (2.81). Для получения множества решений был разработан цикл, который представлен на рисунке 3.26. Следует отметить, что в алгоритме вместо обозначения жёсткости силовой проводки сх используется обозначение ср.

Как и в случае анализа влияния некоторых нелинейностей на показатели качества переходных процессов, представленного в п. 3.1, тп, а, - рабочие переменные, ш х - круговая частота, с которой изменяется управляющее воздействие (в уравнение (2. 40) вместо UBX подставляется U} =UBXsmlwxt]), Ах, ср - зазор люфта и жёсткость силовой проводки, А2 и с2 - массивы, куда при каждом шаге цикла записываются новые значения зазора люфта и жёсткости силовой проводки. Анализ экспериментальных данных показал, что частота, при которой происходит фазовое запаздывание инерционной нагрузки, а коэффициент передачи при этом больше 1.5, составляет около 12-18 ГЦ, Поэтому здесь круговая частота составляет соответственно:

Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА

Анализ результатов показывает, что момент, возникающий вследствие работы устройства коррекции М[ больше г/д момента обратной струи М2, что позволит снизить итоговый момент г/д воздействия и снизить зону нечувствительности при воздействии линейного ускорения. Геометрические размеры струйного каскада не изменились. Для того, чтобы устранить воздействие г/д момента обратной струи, необходимо выполнить отверстия каналов А и Б в диапазоне dK =1.5.„2 мм при расходе через каналы QK = 8..9 л/мин.

Подводя итоги по главе 3, можно выделить следующие выводы: при численном моделировании с помощью разработанной математической модели РП ЛА был выполнен анализ влияния некоторых факторов на показатели качества динамических характеристик, среди которых можно выделить перерегулирование, время регулирования, максимальное перемещение поршня и инерционной нагрузки и др. Анализ позволил выявить степень влияния на характеристики РП таких факторов как люфт в силовой проводке, гистерезис в характеристике управления, нежёсткость силовой проводки и др. Анализ результатов численного моделирования показал, что при изменении жёсткости силовой проводки с, =10 ..106 Н/м величина перерегулирования уменьшается на 50%, а время регулирования tp при жёсткости меньше, чем сх = 106 Н/м, превышает допустимые значения (7Р 0.6..0.7 с). Следовательно, для рассматриваемого РП ЛА с однокаскадной СГРМ не допускается значение жёсткости силовой проводки менее с, =106 Н/м. Анализ результатов численного моделирования выявил значительное влияние эмпирического коэффициента магнитного гистерезиса Р на величину перерегулирования а. Когда величина Р меньше чем Р = 840Н/(Ам), величина перерегулирования достигает 100%), что недопустимо для РП ЛА. В результате проведённых исследований был выявлен диапазон 3 (1500 Н/(Ам) - 2000 Н/(Ам)). с целью определения г/д момента, который отрицательно влияет на характеристику управления, было выполнено имитационное моделирование струйного гидроусилителя в пакете Ansys CFX. В результате проведённых исследований была получена зависимость изменения г/д момента от перемещения струйной трубки для однокаскадной РМ, а также было проведено исследование по влиянию г/д момента на струйную трубку на динамические характеристики. Изменение г/д момента обратной струи происходит не пропорционально смещению струйной трубки РМ. При отсутствии г/д воздействия обратной струи на струйную трубку при частоте колебаний 15 Гц наблюдается устойчивая работа РП ЛА. В данном случае коэффициент передачи составляет меньше 1.5 (у 1.5). В случае г/д воздействия запаздывание инерционной нагрузки относительно поршня ГЦ РМ происходит при значениях с, = 6 107 Н/м и А = 1.2 10-4 м. Для снижения г/д момента обратной струи была разработана функциональная схема СГУ, доработанная на основе существующего изобретения, которая позволяет компенсировать г/д момент, действующий на струйную трубку, и уменьшить зону нечувствительности.

РП различных типов (электрические, гидравлические, пневматические, механические), а также устройства, созданные на их основе, нашли широкое распространение в самых различных областях техники. Любое автоматическое или дистанционно управляемое устройство, начиная от станков или манипуляторов и заканчивая сложными движущимися в неоднородной нестационарной среде объектами (танками, самолетами, кораблями и пр.), обязательно оснащается РП. К особому классу относятся РП для ЛА. Такие РП, создававшиеся в ОАО «ГРЦ им. академика В.П. Макеева», должны были обладать высокими заданными характеристиками и при этом удовлетворять жестким ограничениям по габаритам и массе, иметь высокую надежность, обеспечивать управление ракетой при подводном старте. Кроме основных требований, к системе управления вектором тяги-предъявляются и дополнительные требования: обеспечение необходимых управляющих усилий на активном участке траектории полёта; обеспечение наибольшей эффективности органа управления во всем диапазоне его рабочих параметров; наименьшие потери осевой тяги двигателя при работе органа управления; характеристики органа управления должны быть стабильны в течение всего времени работы ракетного двигателя.

Проектирование органов управления вектором тяги ракетного двигателя неразрывно связано с определением нагрузок, действующих на ПУС. Задача определения газодинамических сил, действующих на определённые элементы конструкции ассиметричных неподвижных сопел при симметричном течении потока по соплу, не представляет особенных трудностей и решается расчётом распределения давления по длине соплового тракта и последующим численным интегрированием сил давления в основном направлении.

Отсутствие надёжных методов расчёта силовых характеристик органов управления вектором тяги РД, учитывающих особенности изменения полётных условий при отработке программ полёта ракеты, выдвигают на первое место экспериментальные методы определения этих характеристик в наземных условиях. При этом стендовые испытания органов управления вектором тяги имеют свои особенности для каждого конкретного органа управления.

Дегтярев, Константин Юрьевич

Цель работы

Целью лабораторной работы является изучение устройства, принципа работы и математических моделей электрических, гидравлических и пневматических рулевых приводов, а также анализ статической и динамических характеристик типового рулевого привода с помощью математической модели привода, составленной в системе программирования Матлаб.

Задание

При выполнение работы необходимо:

    Изучить устройство, принцип работы и математические модели электрических, гидравлических и пневматических рулевых приводов (РП).

    Нанести значения ЛАЧХ и ЛФЧХ, рассчитанные в п.4. Сравнить экспериментальное и теоретическое решения.

Порядок выполнения работы

Лабораторная работа выполняется бригадами на компьютерах.

Бригада выполняет вариант задания, выдаваемый преподавателем. Варианты различаются исходными данными для проведения расчетов.

Все расчеты проводятся в системе программирования Matlab с использованием пакета визуального программирования Simulink.

Предполагается, что начальные навыки работы в Matlab и Simulink были получены студентами при выполнении первой лабораторной работы по данной дисциплине.

Определить экспериментально путем проведения компьютерного эксперимента с моделью привода значения логарифмических амплитудной и фазовой частотных характеристик замкнутого рулевого привода при трех значениях частоты гармонического входного сигнала рад/сек.

Методика выполнения работы

Создание модели привода

Предварительно должны быть выполнены следующие действия:

    Запустить MATLAB

    Открыть приложение Simulink.

    Создать программу моделирования линейного и нелинейного РП, показанную на рисунке.

Расчет статической характеристики привода

Статическая характеристика РП строится путем задания на вход модели привода медленно меняющегося входного воздействия, линейно возрастающего в рабочем диапазоне требуемых углов поворота рулей.

Программа моделирования приведена на рисунке. В ней помимо блоков, реализующих модели самой системы, присутствует блок Ramp на входе и два

блока XY Graph для построения графиков статической характеристики для линейной и нелинейной моделей РП.

Блок Ramp (линейно возрастающий сигнал) берется из раздела Sources (входы) библиотеки блоков пакета Simulink.

Блоки XY Graph берутся из раздела Sinks (выходы) библиотеки блоков Simulink. Они служат для построения зависимости на основе данных

Полученные графики статических характеристик для линейной и нелинейной моделей рулевого привода следует перерисовать и сравнить друг с другом.

Экспериментальное построение частотных характеристик

Для экспериментального определения отдельных точек логарифмических амплитудной и фазовой частотных характеристик РП создаем программу, показанную на рисунке. Для построения частотных характеристик используем линейную модель рулевого привода, приведенную на верхней части схемы. Нижняя часть схемы блокируется с помощью блока Terminator (раздел Sinks библиотеки).

Чтобы на графике было удобно определять амплитуду выходного гармонического сигнала и фазовый сдвиг этого сигнала по сравнению с входным, время моделирования в каждом из трех вариантов расчета следует задавать разным, приблизительно равным 4 периодам входного гармонического сигнала. Период синусоиды связан с ее частотой соотношением: , поэтому. При можно принять сек.

В каждом эксперименте с графиков входа и выхода необходимо снять следующие параметры:

Амплитуду выхода;

Интервал времени между моментами времени, когда входной и выходной гармонические сигналы, соответствующие друг другу, достигают максимальных значений, равных амплитудам этих сигналов.

Следует обратить внимание на тот факт, что при запаздывании выхода по отношению к входу интервал является отрицательной величиной.

Используя результаты экспериментов и исходные данные, необходимо рассчитать значения амплитудной и фазовой частотной характеристик системы при указанных трех частотах. Компьютерные эксперименты и вычисления удобно приводить с использованием таблицы, форма которой приведена в таблице.

Форма таблицы для построения частотной характеристики привода по точкам

Характеристика

Частота синусоиды, рад/сек

Период синусоиды,

Время моделирования,

Амплитуда выходной синусоиды,

Запаздывание выходной синусоиды по отношению к входной, сек

Значение логарифмической амплитудной частотной характеристики,

Значение фазовой частотной характеристики,

Построение частотных характеристик с помощью блока LTI Viewer

Программа LTI Viwer предназначена для анализа характеристик линеаризованной модели, соответствующей заданной нелинейной модели системы, составленной в Simulink. Программа позволяет рассчитать и построить переходный процесс в системе, импульсную переходную функцию, частотную характеристику ситемы и другие.

Для подключения программы к созданной модели системы необходимо выполнить следующие действия:

    Выполнить команду Tools\Linear Analysis… окна Simulink-модели. В результате выполнения команды откроется окно Model_Inputs_and_Outputs (входы и выходы модели), а также пустое окно Simulink LTI-Viewer.

    Установить блок Input Point и блок Output Point в точки входа и выхода модели исследуемой системы.

    В окне LTI Viewer выполнить команду Simulink\Get Linearized Model (создать линеаризованную модель).

Данная команда выполняет линеаризацию модели и сразу по умолчанию строит реакцию системы на единичное ступенчатое воздействие.

    Для получения остальных характеристик системы необходимо выполнить команду Edit\Plot Configuration… в окне LTI Viewer.

Построение переходных процессов

Переходный процесс привода можно построить, подав на вход модели привода ступенчатое воздействие и наблюдая реакцию с помощью блока Scope.

Для линейной системы вид переходного процесса не зависит от величины входного воздействия, т.е. изменяется пропорционально величине ступенчатого сигнала. Поэтому при анализе линейных систем переходный процесс строят при единичном входном ступенчатом воздействии l(t).

Для нелинейных систем реакция системы зависит не только от свойств системы, но и от величины ступенчатого воздействия. Поэтому, чтобы оценить влияние нелинейностей привода на вид переходного процесса, в работе расчеты следует провести при большом ступенчатом входном сигнале.

Ступенчатое воздействие можно задать с помощью блока Step и Constant.

Чтобы сравнивать переходные процессы для линейной и нелинейной моделей гироскопа, целесообразно кривые процессов для этих двух моделей построить на одном графике. В Simulink две или несколько кривых можно построить на одном графике, объединив два или несколько скалярных сигналов в один векторный сигнал и подав этот векторный сигнал на вход блока Scope.

Объединение скалярных сигналов в векторный сигнал выполняется с помощью блока Mux из раздела Signal Routing библиотеки блоков Simulink.

Инерция рулевого привода, характеризуемая его постоянной времени T, сравнительно невелика (до 0.05 сек). Поэтому для построения переходного процесса время моделирования можно задать также небольшое, примерно равное (10-20)Т, т.е. 0.5-1 сек. Это время задается на панели инструментов программы под кнопками Simulation/Simulation Parameters/Stop Time.

Следует зарисовать и сравнить графики переходных процессов, соответствующие линейной и нелинейной моделях рулевого привода.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

Хиндикайнен Е.С. Проектирование воздушно-динамического рулевого привода управляемой гиперзвуковой ракеты зенитного комплекса: Дипломный проект / ТГУ - Тула, 2006.

ВОЗДУШНО-ДИНАМИЧЕСКИЙ РУЛЕВОЙ ПРИВОД, ГАЗОРАСПРЕ-ДЕЛИТЕЛЬНОЕ УСТРОЙСТВО, РАБОЧАЯ ПОЛОСТЬ, СОПЛО, ПРИЕМНИК, ШПАНГОУТ, АЭРОДИНАМИЧЕСКИЕ РУЛИ, ЭЛЕКТРОМАГНИТ.

Целью дипломного проекта является разработка воздушно-динамического рулевого привода.

В ходе выполнения проекта необходимо обосновать выбор типа и структуры привода, составить математическую модель привода, рассчитать конструктивные параметры, произвести тепловой расчет конструкции, рассчитать управляющий электромагнит и динамические характеристики привода.

В технологической части составлены маршрутные карты и технологический процесс сборки рулевой машины.

В экономической части составить сетевой график процесса проектирования рулевого привода.

В проекте рассмотрены вопросы охраны труда, меры по недопущению вредных и опасных факторов, электробезопасность, пожарная безопасность.

Введение

1. Основная часть

1.1 Обоснование выбора типа привода и его структуры

1.2 Принцип действия РП

1.3 Математическое описание функционирования ВДРП

1.4 Расчет первоначального варианта РП

1.5 Расчет обобщенных и конструктивных параметров

1.6 Описание конструкции РП

1.7 Тепловой расчет конструкции

1.8 Математическая модель РП

1.9 Расчет автоколебательной системы ВДРП и ее динамических характеристик

1.10 Расчет управляющего электромагнита

2. Технологическая часть

2.1 Разработка приспособления

2.2 Порядок работы с приспособлением

3. Экономическая часть

3.1 Составление и расчет сетевого графика

4. Охрана труда

4.1 Анализ вредных и опасных факторов при проектировании РП

4.2 Меры по недопущению вредных и опасных факторов

4.2.1 Расчет освещенности

4.2.2 Электробезопасность

4.2.3 Пожарная безопасность

Заключение

Список использованной литературы

Введение

Любой товаропроизводитель при создании нового вида продукции преследует определенные цели; удовлетворение спроса на рынке, получение определенного объема прибыли посредством продажи данного продукта.

Чтобы достигнуть этих целей в нынешних условиях существования наших предприятий необходимо добиваться улучшения ряда показателей: повышение качества выпускаемой продукции, снижение себестоимости изготовления изделия, повышение числа дополнительных возможностей изделия, потребительских новшеств, что делает изделие более привлекательным по сравнению с аналогичными конкурирующими изделиями, и другие показатели, позволяющие привлечь потенциальных покупателей и устоять в усиливающей конкурентной борьбе товаропроизводителей.

Принципиально к военной технике, в данном случае, летательным аппаратам, предприятие - изготовитель должно работать над следующими показателями, характеризующие изделие: снижение стоимости, уменьшение общей массы летательного аппарата за счет введения в конструкцию изделия технических нововведений, постоянное повышение качества изготовления, простота эксплуатации и обслуживания.

Производя продукцию с учетом этих показателей оборонное предприятие сможет производить конкурентоспособную продукцию и удовлетворять запросы любых заказчиков.

Управление летательным аппаратом (ЛА) является важнейшей научной и практической проблемой современного самолето и ракетостроения.

Для обеспечения полета ЛА по требуемой траектории применяется совокупность различных технических средств, представляющая собой систему управления.

По функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы:

1) устройства формирования управляющего воздействия с сигнала управления;

2) органы управления, которые создают управляющие усилия;

3) рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием.

Так как данный дипломный проект посвящен разработке рулевого при вода, рассмотрим более подробно 3-тью группу устройств.

Рулевые приводы осуществляют в системе управления функциональную взаимосвязь между устройствами первой и второй групп. Поэтому наряду с функциональными элементами, обеспечивающими создание силового воздействия на органы управления (источники питания, кинематически связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функциональные элементы, которые устанавливают соответствие этого силового сигнала формируемому в системе управления управляющему сигналу (преобразователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датчики).

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управляющую системы. Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления.

Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.

Структура, характеристики и конструкция рулевого привода определяются типом летательного аппарата. В данном дипломном проекте рассматривается рулевой привод для малогабаритных ЛА, полет которых происходит в плотных слоях атмосферы. Такие рулевые приводы осуществляют перемещение, как правило, поворотных аэродинамических рулей ЛА и характеризуются высоким быстродействием, способностью развивать значительные усилия при низкой массе и малых габаритах конструкции. Их энергетические и габаритно-массовые характеристики существенно зависят от вида используемой энергии.

Бурное развитие ЛА в пятидесятых годах заставило применять пневмопривод с воздушным аккумулятором давления в системах управления ЛА из-за того, что он был наиболее дешевым, простым и надежным рулевым механизмом.

В шестидесятых годах получили распространение рулевой привод на горячем газе, широко применяемый и в настоящее время. Переход от воздушного аккумулятора давления в системах рулевых приводов, "занимающего значительный объем в ЛА, к малогабаритному и простому в изготовлении пороховому генератору газа позволил улучшить габаритно-массовые и эксплутационные характеристики рулевых приводов.

Создание в семидесятых годах рулевого привода без бортового источника питания - воздушно-динамического - положило начало новому этапу совершенствования рулевых приводов малогабаритных ЛА;

Следует также упомянуть о существовании электромагнитных рулевых приводов, в которых управления лопастями происходит напрямую силовым электромагнитом, напитываемым от аккумуляторной батареи. Однако они так же не получили широкого применения вследствие малой мощности и большого веса источника питания электромагнита.

1. Основная часть

1.1 Обоснование выбо ра типа привода и его структуры

Классификация приводов.

Приводы лопастей предназначены для преобразования электрических сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного двигателя.

Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и необходимое ускорение при обработке заданных выходных сигналов с требуемой динамической точностью.

На базе уже существующих конструкций приводы могут быть классифицированы:

1) по типу силовой системы:

Воздушно - динамические;

Пневматические;

Горячегазовые;

Электромагнитные;

2) по принципу управления лопастями:

Релейное двух и трехпозиционное управление;

Пропорциональное управление;

3) по схеме управляющей системы:

Автоколебательная с двух и трехпозиционным управлением;

Самонастраивающаяся с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

Автоколебательная с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

4) по типу исполнительного двигателя:

Одностороннего и двух стороннего действия;

Полуоткрытого и закрытого типа;

5) по типу распределительного устройства:

Поворотный золотник на входе, на выходе, на входе и выходе одновременно;

Струйная трубка;

Клапанное распределительное устройство на входе, выходе, входе и выходе одновременно.

Выбор типа РП.

Создавая новую конструкцию РП с учетом требований, изложенных в введении, необходимо выбирать такой тип привода, который обеспечивал бы требования по точности при меньшей массе и расходовал бы меньшее количество энергии по сравнению с другими типами приводов.

Для малогабаритных ракет наиболее перспективными являются рулевые привода, которые используют скоростной напор набегающего потока воздуха, получившие название -- воздушно-динамические рулевые привода.

Привода такого типа не требуют размещения на борту летательного аппарата специального источника энергии для осуществления поворота рулевых лопастей. В таком приводе поворот рулей осуществляется за счет набегающего потока воздуха. Отсутствие источника энергии улучшает массо-габаритные характеристики. Такие привода обладают следующими преимуществами перед другими приводами: простотой конструкции и обслуживания, малой металлоемкостью, небольшой трудоемкостью изготовления, надежностью работы, сравнительно невысокой стоимостью.

Воздушно-динамические рулевые привода развивают достаточную мощность и обеспечивают необходимое быстродействие, при этом аэродинамическое сопротивление, создаваемое воздухозаборником, пренебрежимо мало.

Системы приводов, использующие аэродинамический напор воздуха, обладают следующими свойствами:

Независимость габаритов силовой системы от времени работы,

Соответствие располагаемых и требуемых характеристик в широком диапазоне скоростей, постоянство фазового сдвига в широком диапазоне частот вращения.

1. В состав РП входят:

1) две рулевые машины (РМ);

2) шпангоут с аэродинамическими рулями;

3) воздухозаборное устройство;

4) блок усилителей,

5) теплоотборник

2. Основные технические требования к РП следующие:

1) РП двухканальный, воздушно-динамический. Зависимость отклонения рулей от входного сигнала пропорциональная;

2) максимальный угол отклонения рулей б m = ±25 o ±l °;

3) форма и геометрические размеры руля представлены на рис. 1.1

Рис. 1.1. Геометрическая форма и размеры руля.

4) динамические характеристики РП обеспечиваются в диапазонах:

чисел Маха (М)........................................ от 1,1 до 5,5

частот вращения по крену (Гц)....................от 3,0 до 21,0

температур воздуха на входе (Т а), К........ от 223 до 2140

шарнирных нагрузок (М ш) НМм................... от минус 0,1 до минус 6,35;

избыточных давлений (P и), Па от 1,2-10 до 38,0-10

5) РП обеспечивает заданные динамические характеристики с момента начала управления (t y) при М > 1,1:

ty= 0,59 с при Та =-50°С;

t y = 0,50 c при Та = 20°С;

t y = 0,37 c при Та = 50°С;

6) фазовые сдвиги РП при синусоидальном входном сигнале в диапазоне частот вращения f min -f max и амплитудах входного сигнала 0-25° от минус 5 до минус 25°;

7) нормированный коэффициент передачи в линейной зоне по первой гармонике при синусоидальном входном сигнале в условиях работы ракеты и с учетом погрешности изготовления при номинальном напряжении питания

8) номинальное значение коэффициента передачи, относительно ко-торого нормируется коэффициент передачи РП,

k н ом = 5,8°/В. Коэффициент передачи изменяется обратно пропорцио-нально питающему напряжению.

9) ненули на выходе РП (Дд) с момента начала управления (М? 1,1) не более 2,5°, до начала управления Дд? = ± 25°;

10) РП должен быть стойким, прочным и устойчивым на всех этапах эксплуатации к воздействию внешних факторов в соответствии с требованиями ТЗ и требованиями ГОСТ В20.39.302-76, ГОСТ В20.39.303_76, ГОСТ В20.39.304-76, ГОСТ В20.39.308-76, предъявляемыми к изделиям классификационной группы 4.3 с учетом требований групп 1.7 и 1.13;

11) время боевой работы РП на траектории не менее 18,8 с. Ресурс работы РП не менее 2 ч, в том числе с подачей пневмопитания -1ч.

Успех проектирования зависит не только от типа привода, но и от его структуры. При выборе структуры привода необходимо принимать во внимание требования, предъявляемые к приводу: ограничения по динамическим характеристикам, массо-габаритные характеристики, величина потребляемого тока от источника энергии. В системах приводов применяются структуры систем непрерывного и релейного действия. Системы приводов непрерывного действия более трудоемки в сравнении с системами релейного действия, так как их элементы должны иметь линейные статические характеристики. В системах приводов релейного действия используются более простые элементы: усилитель мощности, электромагнит, распределитель функционируют в двухпозиционном режиме. Автоколебания системы приводов не требуют обеспечения устойчивости. Наиболее просты разомкнутые системы приводов, но по сравнению с системами приводов с обратной связью требуемые динамические характеристики в них обеспечиваются за счет повышения мощности привода. Привод с большой мощностью требует большого расхода энергии: электромеханический преобразователь должен иметь большой электромагнитный момент, что обуславливает увеличение его объема и массы; от усилителя мощности требуется большая мощность для управления. Все это приводит к существенному увеличения объема и массы системы привода. В замкнутой системе привода вводятся датчик обратной связи, измеритель ошибки. Обычно они занимают малые объемы, имеют малые массы. Автоколебательные системы имеют лучшие динамические характеристики.

Поэтому, приходим к выводу, что при заданных нагрузках и требуемых динамических характеристиках целесообразно, для обеспечения минимальных габаритов и массы летательного аппарата, применение замкнутого автоколебательного рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха.

Перспективность проектирования рулевого привода релейного действия обусловлена следующими преимуществами: в замкнутом контуре обеспечиваются высокочастотные автоколебания малой амплитуды, благодаря которым линеаризуются нелинейности в механической передаче (люфт, трение покоя), в электромагните (зона нечувствительности) и практически исключается их влияние на преобразование управляющих сигналов; достигается высокая динамическая точность; система состоит из меньшего числа элементов по сравнению с системами непрерывного действия; система релейного действия проста в изготовлении, так как не требует регулировки; требует минимального объема проверок.

1.2 Принцип действия РП

При полете управляемой ракеты набегающий поток воздуха через носовой воздухозаборник, теплообменник и распределительное устройство проходит в рабочие полости РМ. С блока усилителей сигнал ошибки, равный разности сигналов управления и датчика обратной связи, подается поочередно на одну или другую обмотки управляющего электромагнита. При поступлении сигнала в одну из обмоток якорь притягивается к ней и устанавливает струйную трубку напротив соответствующего окна приемника. Воздух поступает в рабочую полость, и в ней устанавливается максимальное давление, одновременно вторая полость оcвобождается. Под действием разницы рабочих давлений в рабочих полостях рули смещаются пропорционально входному сигналу, совершая при этом высокочастотные автоколебания. При отсутствии - входного сигнала автоколебания совершаются относительно нулевого положения рулей.

1.3 Математическое описание функционирования воздушно-динамического привода

Состояние физического тела -- однородного газа -- в некотором проточном объёме W i в каждый момент времени характеризуется совокупностью следующих параметров:

Давления P i

Удельного веса г i

Температуры T i .

Для этого газа, полагая его идеальным, справедливо уравнение состояния:

(1.3.1)

Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используются два закона:

Закон сохранения энергии;

Закон сохранения массы.

Принимаем допущения о том, что параметры газа являются медленно меняющимися по сравнению с изменением сигналов управления.

Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений:

Уравнения с медленно меняющимися координатами;

Уравнения с быстро меняющимися координатами.

Учитывая выше изложенное, применим для описания функционирования привода законы сохранения энергии.

Расчетная схема канала РП представлена на рисунке 1.3.1

Рис 1.3.1 Расчетная схема рулевого привода

Закон сохранения энергии можно записать в следующем виде:

Для полости теплоотборника

Для рабочей полости

Для полости отсека

Закон сохранения массы:

Для полости теплоотборника

Для рабочей полости

- для полости отсека

Удельный приход (расход) энергии находим по зависимостям:

Массовый секундный приход (расход) газа в рабочей полости определяется по формулам:

Функции режима течения определяются по формулам:

Математическое описание двигателя включает а себя еще и уравнения, полученные из уравнения состояния. Они имеют вид:

Для полости теплоотборника

Для рабочей полости

Для полости отсека

С учетом теплообмена будем иметь следующие зависимости:

Для стенок теплоотборника

Для стенок рабочей полости

Для стенок отсека

Механическая подсистема описывается следующими уравнениями:

Эффективные сечения входного и выходного отверстий распределительного устройства типа «струйная трубка» с достаточной для инженерной практики точностью можно описать с помощью полинома первой степени.

Для входного сечения:

Для выходного сечения:

Используя выражение для параметров можно записать:

где и - соответственно, фактический и максимальный углы поворота распределителя.

Полное нелинейное математическое описание (МО) исполнительного механизма имеет вид:

Математическое описание исполнительного механизма будет иметь следующий вид:

(1.3.21)

где Т г =

где Т ум - постоянная времени управляющего электромагнита;

ж - коэффициент колебательности;

k ум - коэффициент аппроксимации;

U bx - напряжение входного сигнала;

P Пi - давление в полостях привода;

k - показатель адиабаты;

П то - удельный расход энергии в теплоотборнике;

G to - удельный массовый секундный расход рабочего тела в теплоотборнике;

П П1,2 - удельный расход энергии в рабочих полостях;

G П1,2 - удельный массовый секундный расход рабочего тела в полостях;

S П - площадь поршня;

д, д m - угол поворота и максимальный угол поворота рулей;

W 1,2 - объем рабочих полостей;

Т П1,2 - температура рабочего тела в полостях;

г П1,2 - удельный вес рабочего тела в полостях;

R - универсальная газовая постоянная;

I ? - приведенный суммарный момент инерции подвижных частей;

f - коэффициент вязкого трения;

m ш (д) - жесткость шарнирной нагрузки;

М стр - момент сухого трения;

k о - газодинамический коэффициент;

P ТО - давление в ресивере;

Y П1,2 , Y ТО1,2 - газодинамические функции режима течения;

µS b x 1,2 , µS bыx1,2 - эффективные площади втекания и истечения в рабочих полостях;

P о - давление в отсеке;

с - коэффициент, характеризующий регулируемое втекание;

б, б m - угол поворота и максимальный угол поворота якоря управляющего электромагнита;

б, б у - коэффициенты, характеризующие регулируемое истечение.

Структурная схема исполнительного механизма будет иметь следующий вид:

Рис 1.3.2 Структурная схема исполнительного механизма.

1.4 Расче т первоначального варианта ВДРП

Проанализируем диапазон чисел Маха на участке управляемого полета:

В таблице 1.1 отражена зависимость коэффициента от чисел Маха:

Таблица 1.1

Значения коэффициента подъемной силы c n = f (M, б э ф) и относительного положения центра давления x d = f (б э ф, М) приведены, соответственно, в таблицах 1.2 и 1.3

Таблица 1.2 коэффициент с п

центр давления

Выбираем положение оси вращения руля:

Х ов = (0,05 ? 0,1) - (X dmax - X dmin) + X dmin

Значение х ов = 52 мм

Рассчитаем значения шарнирных нагрузок по зависимости:

q = 0,725 М 2 ;

в р - аэродинамическая хорда; в р = 86 мм;

S xap - площадь сечения ракеты; S xap = 28,27 см 2 ;

с п - коэффициент подъемной силы;

x d - относительное положение центра давления;

Значения шарнирных нагрузок приведены в таблице 1.4

Таблица 1.4

значения шарнирных нагрузокМ н [кгсм]

Зависимость шарнирных нагрузок от чисел Маха и от эффективных углов приведены на рисунке 1.4.1.

Рассчитаем значения избыточных давлений при соответствующих числах Маха по зависимости:

при, Р ст = 1 ат;

при, Р ст = f(H,T);

Определим изменения параметра характеризующего соотношение момента нагрузки и развиваемого приводом момента:

Избыточное давление,

с п - коэффициент подъемной силы,

х ов - положение оси вращения руля,

х d - относительное положение центра давления,

М - число Маха.

Рассчитаем значение энергетической функции, которая характеризует отношение мощности потребной и мощности развиваемой:

где N потр =,

Потребная скорость;

Потребный момент;

Максимальный момент;

- максимальная скорость;

где f в p - частота вращения, Гц

М н - момент нагрузки,

Y n - газодинамическая функция расхода,

Т - температура газа в рабочей полости.

Все данные, рассчитанные по выше изложенным зависимостям, представлены в таблицах 1.5-1.8.

Таблица 1.5 ,Т = -50°С

Таблица 1.6 ,Т = +50°С

Р изб,атм

Таблица 1.7 ,Т = -50°С

Р изб, атм

Таблица 1.8 ,Т = +50°С

М н, Кг/см

Р изб, атм

Из полученных расчетных данных определим режимы полета, на которых будем в дальнейшем производить расчеты конструктивных и обобщенных параметров, проводить тепловой расчет.

Конструктивный расчет S n l будем определять на режиме, где параметр k у, характеризующий соотношения момента нагрузки и развиваемого момента имеет экстремум.

k у = 0,0098 при, T = -5O°C, t = O,6 c.

Расчет потребной скорости будем проводить на режиме, где энергетическая функция с э имеет экстремум, или, другими словами, где потребная мощность максимально приближена к развиваемой мощности привода.

с э = 11,57 при 0 = 70°, Т =-50° С, t = 5,8 с.

Тепловой расчет будем проводить на режиме, где достигается максимальная скорость полета: ,Т = +50°С.

1.5 Расчет обобщенных и конструктивных пара метров

Расчет конструктивного параметра S n l.

Расчет конструктивного параметра будем проводить, исходя из обеспечения допустимого значения по зависимости:

(1.5.1)

S n - площадь поршня,

- максимальный относительный перепад давлений,

где Р n 1,2 - давление в рабочих полостях.

Для распределительного устройства типа "струйная трубка" можно принять k у находится как экстремум функции k у = 0,0098.

о- коэффициент, учитывающий утечки в полостях и потери в системе о=0,9

Принимаем S n l = 9-10 -6 м 3 = 9 см 3 .

Расчет развиваемого момента.

Расчет развиваемого момента будем проводить, исходя из следующего соотношения:

Р ИЗб выбирается для экстремума с энерг

с энерг = -11,57, Ризб =12,41 атм.

Тогда М т = 9 * 0,75 * 12,41 = 83,8 кг/см.

Зная момент нагрузки М т = 25,02 кг- см, можно определить значение параметра у:

Отсюда видно, что у < у доп при у доп = 0,4.

Расчет потребной и максимальной скорости.

Расчет потребной скорости будем проводить, исходя из отработки угла д 0 на частоте f при действии нагрузки, по зависимости

где д 0 = д m - угол отклонения рулей, д 0 = 0,44 рад.

Параметр для газораспределительного устройства типа "струйная трубка" можно принять 1;

щ = 2*f = 2* f вр 1,5 + 2*1,5 + 2*1,5 - круговая частота вращения объекта рассчитывается с учетом разброса на конструктивные параметры и частоты управления.

щ =2* 12,96*2* 1,5* 2* 1,5 = 100 с -1 ,

59,5 рад/с.

Максимальная скорость находится из следующего соотношения:

где - коэффициент, учитывающий разброс конструктивных параметров, = 1,15;

k тр = 0,9 - коэффициент, учитывающий трение,

Расчет эффективной площади выходного отверстия ГРУ.

Эффективная площадь выходного отверстия газораспределительного устройства может быть определена из зависимости для определения максимальной скорости:

где Т п - температура рабочего тела в полости, Т п = 900 К,

Y - газодинамическая функция расхода, Y = 1 при Р изб = 12,41 атм.

R, k о - параметры, характеризующие рабочее тело,

k о - показатель адиабаты, k о = 21,4,

R - универсальная газовая постоянная R = 2927 кг. см / кг-К

Эффективная площадь выходного отверстия ГРУ будет равна:

Эффективная площадь входного отверстия ГРУ будет равна:

Коэффициент расхода, - коэффициент расхода, = 0,85?0,9.

Выходные и входные площади отверстий ГРУ будут равны, соответственно:

S вых = 0,024 см 2 ; S BX = 0,021 см 2 .

1.6 Описание конструкции РП

В состав двухканального РП входят две рулевые машины, обеспечи-вающие управление каждым каналом, шпангоут с двумя парами аэродинамических рулей, воздухозаборник, теплоотборник, блок усилителей, конструктивно располагающийся в электронной аппаратуре ракеты.

Разработанный привод представляет собой пропорциональный рулевой привод, использующий энергию набегающего потока воздуха с исполнительным релейным двигателем двухстороннего действия и распределительным устройством "струйная трубка".

Поршень исполнительного двигателя имеет уплотнения, обеспечивающие плотное прилегание поршня к стенкам цилиндра, что обеспечивает отсутствие перетекания между полостями. Уплотнение поршня комбинированное состоит из фторопластовых колец, подпружиненных изнутри воротничковыми манжетами.

Основными сборочными единицами РП являются шпангоут и рулевые машины.

В шпангоуте на подшипниках качения установлены аэродинамические рули. На шпангоут с помощью винтов крепятся с двух сторон рулевые машины. Поступательное движение штока рулевой машины преобразуется во вращательное движение рулей посредством промежуточной тяги.

В состав рулевой машины входит силовой цилиндр двухстороннего действия, поршень с уплотнениями, потенциометрический датчик обратной связи, распределительное устройство. Распределительное устройство состоит из поворотного сопла, закрепленного на оси управляющего электромагнита и неподвижного приемника, который имеет два прямоугольных окна, связанные через подводные каналы с полостями рабочего цилиндра.

При торможении воздушного потока от элемента конструкции привода выделяется большое количество тепла, в результате чего конструкция нагревается. Поэтому необходимо использовать материалы для изготовления, способные выдерживать высокую температуру. Носовой обтекатель будет изготавливаться из цинко-молибденового сплава ЦМ-2А, аэродинамические рули из хромо-никелевого сплава ЖСБК~Ви. Остальные детали конструкции, менее подверженные тепловому воздействию будут изготавливаться из нержавеющей стали. Для охлаждения воздуха, попадающего через воздухозаборник в рабочие полости, в передней части РП установлен теплоотборник, состоящий из тонких металлических трубок, проходя через которые, воздух охлаждается.

1.7 Тепловой расчет

Тепловой расчет конструкции проводится после предварительной компоновки РП по алгоритму, приведенному на рис. 1.7 в следующем порядке:

1) определяется температура газа на входе в воздухозаборное устройство

Т вх =Т а (1+0,2М 2);

2) по первоначально выбранному q j , определяется температура рабочего тела в j-том элементе конструкции

3) определяются параметры,

4) рассчитывается критерий Био:

5) определяются коэффициенты уравнений для расчета температуры рабочего тела и стенок конструкции j-того элемента:

6) рассчитывается параметр

Если отличие заданного значения и рассчитанного составляет более 15%, то проводится повторный расчет, и в качестве берется рассчитанное значение.

Результаты расчета тепловых процессов используются для уточнения обобщенных параметров привода и выбора материалов конструкции.

Алгоритм расчета температур рабочего тела и стенок конструкции

Выбор режима расчета и первоначального значения q ч

Расчет температуры газа в трубопроводе

Расчет параметра k ат и коэффициентов теплоотдачи б п и б вт

Расчет температуры воздуха в трубопроводе и температуры стенки

Расчет параметра q з

Выбор первоначального значения q ф1

Расчет параметра k ап и коэффициентов б п и б вт

Определение коэффициентов уравнений для расчета температур

Расчет температуры воздуха в фильтре и температуры стенки фильтра

Расчет параметра q ф

Выбор первоначального значения q пi

Расчет параметра k ф1 и коэффициентов теплоотдачи б п и б вых

Расчет критерия ВИО для полости

Определение коэффициентов уравнений для расчета температур

Расчет температуры воздуха в полости и температуры стенки

Расчет параметра q п

Определение Т от (t), Т т (t), Т оф (t), Т ф (t), Т оп (t), Т п (t)

Выпуск отчетной документации

По приведенным выше математическим моделям рассчитаны параметры силовой и управляющей частей РП, управляющего электромагнита и температуры рабочего тела.

В качестве расчетных выбраны режимы (рис. 1.7, 1.8):

1) для расчета S n l - режим, соответствующий экстремуму k у:

Т а =223 К, t = 0,6 c, М=1,124, Р н =1,22М10 5 Па

k у min = - 0,0094, x ов = 61мм, М н = - 0,324 Нм, f в p = 3,6 Гц;

2) для расчета требуемой скорости и размеров распределительного устройства - режим, соответствующий экстремуму С э:

Т а =323 К, t = 4,8 c, М=5,014, Р н =18,2М10 5 Па, Х ов = 61 мм

М н = -3,68 Нм, f вp = 15,1 Гц. Н = 5200 м, Т вх = 1748 К, Дf вр = 3,0 Гц,

f y = 1,0 Гц, С min =-1,8;

3) для расчета управляющей части - режим, на котором имеют место максимальные фазовые сдвиги на рабочих частотах:

Т а = 323 К, t = 9,8 с, М = 5,23, Р и = 4,98М10 5 Па, Х ов = 61 мм, М н = = - 0,916 Нм, f в p = 14,06 Гц, Н = 14686 м, Т вх = 1475 К, Дf в p = 2,8 Гц, f y = 1,0 Гц;

4) для расчета тепловых процессов - режим, на котором имеют место максимальные температуры потока воздуха в воздухозаборнике:

Т а = 323 К, t = 1,38 с, М m ах = 5,308, Р а = 35,7·10 5 Па, Н = 0,

Т вх mах = 2132 К.

При b с = 9,7 10 -2 м, S p = 28,3М10 -4 м 2 , Дс m = 0,75, у доп = 0,4, о= 0,4, д m = =0,436 рад,

получены следующие основные конструктивные и обобщенные параметры исполнительного двигателя:

произведение площади поршня на плечо S n l, м 3 ...............9,0М10 - 6 ;

плечо 1, м..........................................................................1,05 10 - 2 ;

требуемая скорость Щ , 1/с...............................................76,03.

эффективная площадь истечения из рабочей полости

µS вых, м 2 ........................................................................... 2,00 10 -6 ;

эффективная площадь втекания в рабочую полость,

µS вх, m 2 ............................................................................. 1,8 10 -6 .

Зависимости параметра k у времени для различных режимов работы

Зависимость энергетической функции от времени для различных режимов работы

В конструкции реализовано S n l = 10,0-10 -6 м 3 .

В результате расчета управляющей части РП при = 6, = 88,3с - 1 ,

0,0393 рад, = -20°, = 76,4 с- 1 , М рп, = 3,36 Нм, J = 0,000025 кгм 2 , f = 0,001 Нмс, Мстр = 0,15

Нм определены параметры и структура привода:

частота автоколебаний, 1/с.................................... 530

амплитуда автоколебаний д а,рад................................ 0,277

время эквивалентного запаздывания УЭМ t э y M, с.......0,0016

величина зоны неоднозначности релейного усилителя, приведенная к

выходу ДОС U в........................................................ 1,0

параметр корректирующего фильтра С к.................... 1,76

амплитудная характеристика разомкнутого РП А р (). 2,505

фазовая характеристика замкнутого ) .........минус 20°

Для реализации С к = 1,76 использован корректирующий фильтр с передаточной функцией вида:

где: T i = 0,004 с, Т г = 0,012 с.

Основные параметры управляющего электромагнита, рассчитанные из условия обеспечения времени эквивалентного запаздывания t э = 0,0016 с при напряжении питания U n = 30 В, угле поворота = 0,0393 рад и максимальном допустимом токе потребления на канал J д? 0,8 А, следующие:

сопротивление обмотки при 20°С R о, Ом...................62±3;

число витков W, не менее....................................... 900;

провод ПЭТВ-0,112;

плечо якоря l я, м............................................... 1,15-10 - 2 ;

площадь якоря S a , м 2 ........................................... 0,2-10 -4 ;

площадь минимального сечения магнитопровода, м 2 .... 0,2-10 -4 ;

эквивалентная длина магнитопровода l ст, м............0,675-10";

жесткость пружины С пр, Нм/рад..............................1,7.

Время срабатывания рассчитанного УЭМ не более 0,002 с. Температура рабочего тела в трубопроводе Т Т, теплоотборнике Т ф, рабочих полостях Т п стенок Т ст, Т сф, Т сп для наиболее тяжелого с точки зрения нагрева режима превышают допустимых для легированных жаропрочных сталей, рис. 1.9. Расчет проведен при следующих исходных данных:

0,03-10 - 4 м 2 , F T = 14,1-10 -4 м 2 , t = 1,38 с, Т вх = 2132 К, Р вх = 36-10 5 Па, R = 29,27 Дж/(Н-К), k = 1,4, = 8,51Вт-м/(НМК),

0, J T = 0,015 кг, С т = 1087 Дж/(кг-К), б оф = 63,85Вт-м/(Н-К),

0,03-10 - 4 м 2 , Р ф = 203-10 -4 м 2 , J ф = 0,174 кг, С ф = 627 Дж/(кг-К), В i ф = 0

0, Р ф = 34 -10 5 Па, = 0,02-10 -4 м 2 , = 21,28 Вт-м/(Н-К), Р п = 20-10 5 Па, F n = 14,94- 10 -4 м 2 , = 420 Вт/(м 2 - К).

Проведенный тепловой расчет показал, что прогрев элементов конструкции достаточно высок, и необходимо при конструктивной проработке экспериментальных исследованиях обратить особое внимание на следующие "слабые" места в конструкции:

1) зазор между струйником и приемником из-за линейного удлинения струйника Дl c = 0,09 мм должен быть не менее 0,11- 0,12мм;

2) возможно нарушение целостности уплотнений по поршню и перетекание воздуха из полости в полость;

3) обмотки управляющего электромагнита, датчик обратной связи и монтаж должны быть защищены от воздействия горячего воздуха;

4) ленточный кабель должен быть теплоизолирован;

5) теплоотборник должен быть изолирован от обтекателя и иметь максимальную массу;

6) рабочий воздушный поток следует тормозить на входе теплоотборника;

7) пайки проводников следует по возможности заменить на сварку, промежуточные пайки исключить;

8) должен быть продолжен поиск новых обмоточных и монтажных проводов в случае увеличения времени работы привода, используемые в данной конструкции на пределе возможностей.

Зависимости температур стенок конструкции РП и воздуха на его входе от времени

1.8 Математическая модель рулевого привода

Для проектирования управляющей части и для расчета динамических характеристик привода будем использовать модель РП, состоящую из следующих элементов:

1. Исполнительный двигатель, описываемый следующей системой

уравнений:

2. Сумматор:

ДU = U вх - U ос

3. Релейный элемент:

U в - зона триггера,

U p - максимальное значение релейного усилителя.

4. Управляющий электромагнит:

ф - время эквивалентного запаздывания.

5. Корректирующий фильтр.

6. Датчик обратной связи: k ос = 1 В/рад.

Структурная схема такого привода будет иметь вид, представленный на рисунке:

Рис 1.8 Структурная схема РП.

1.9 Расчет автоколебательной системы ВДРП и ее динами ческих характеристик

Расчет автоколебательной системы воздушно-динамического РП проведем по следующему алгоритму:

1. Рассчитаем частоту автоколебаний:

(1.9.1)

- круговая частота, находится для режима наименьшей точности:

= 70°, Т = +50°, = 2рf = 2р 14,06 = 88,3 рад/с.

Примем = 6, тогда = 6М88,3 = 530 рад/с/

2. Определим требуемое время эквивалентного запаздывания управляющего электромагнита:

(1.9.2)

где ц нел - фазовая характеристика нелинейного элемента,

ц нел = - arcsin л, л. = 0,1 ?0,15;

ц к - фазовая характеристика корректирующего фильтра на частоте автоколебаний;

ц п - фазовая характеристика привода на частоте автоколебаний;

ц к = arctg

Найдем передаточную функцию привода:

Определим фазово-частотную характеристику привода при следующих данных: кг/см = 3,3НМм; кг/см = 0,72 НМм; рад/с; f = 0,01 кгМ смМc НМмМc 2 ; = =0,0436 рад; = 0,44 рад.

Время эквивалентного запаздывания электромагнита:

без влияния корректирующего фильтра.

3. Рассчитаем амплитуду автоколебаний по зависимости:

Амплитудная характеристика привода на частоте автоколебаний.

t о - время движения якоря электромагнита от упора до нейтрального положения, t о = 1,15 мс;

0,21 рад =12 0

4. Определим потребную амплитудную характеристику разомкнутого привода на рабочей частоте из условия обеспечения требуемого фазового сдвига замкнутого рулевого привода.

Фазовая характеристика электромагнита на рабочей частоте;

Фазовая характеристика нелинейного элемента;

Фазовая характеристика привода на рабочей частоте;

; = - 0,28; =0,076;

74,8 0 = 1,3 рад ; = 88,3·2,3·10 -3 = - 0,2 рад = - 11,5 0

74,8-11,5 = -86,3 0

Потребная амплитудная характеристика разомкнутого привода на рабочей частоте будет равна:

5. Определим необходимость установки корректирующего фильтра:

Так как с к > 1, то делаем вывод о том, что необходимо ставить корректитрующий фильтр.

7. Ставим корректирующий фильтр вида,

где постоянные времени определим по зависимости:

Определим фазовую характеристику фильтра на рабочей частоте:

Амплитудная характеристика фильтра на рабочей частоте:

Фазовая характеристика фильтра на частоте автоколебаний:

Амплитудная характеристика фильтра на частоте автоколебаний:

Определим параметр корректирующего фильтра на частоте автоколебаний:

Значит, выбранный параметр подходит для системы.

Определим амплитудно-фазовые характеристики системы с учетом корректирующего фильтра. Расчет произведем по следующим зависимостям:

tg= - 0,354; = - 19,4 0 .

Так как полученный фазовый сдвиг на рабочей частоте удовлетворяет требованиям, то выбранный фильтр подходит для системы.

8. Теперь необходимо рассчитать и построить динамические характеристики привода для различных режимов работы и при различных входных сигналах. Для расчета динамических характеристик воспользуемся программой, предназначенной для расчета амплитудно-фазовых характеристик замкнутой системы. Для каждого режима будем считать динамические характеристики при трех различных входных сигналах: U вx1 = 0,088 рад; U вx2 = 0,314 рад; U вx2 = 0,44 рад.

1 режим: ; Т = +50° С; t = 9,8 с; f = 14,06 Гц, Щ м = 65,6 рад/с;

М m = 3,3 Н*м; М н = 0,72 Н*м; Р изб = 4,85 атм; w 0 = 88,3 рад/с.

Рассчитаем необходимые данные для ввода:

Результаты расчета приведены в таблицах 1.9.1-1.9.3.

Таблица 1.9.1

U BX = 0,088 рад

Таблица 1.9.2

U вх = 0,314 рад

Uвх = 0,44 рад

2 режим: = 70°; Т = -50° С; t = 0,6 с; f = 3,59 Гц, = 65,631,5 рад/с; М т = 0,82 Н*м; М н = 0,324 Н*м; Р изб = 1,22 атм; w 0 = 22,57 рад/с, Т н = 4,5-10 -3 с, = 0,15, = 722,5.

Результаты расчета приведены в таблицах 1.9.4-1.9.6.

Таблица 1.9.4

U BX = 0,088 рад

Таблица 1.9.5

U BX = 0,314 рад

Таблица 1.9.6

U bx = 0,44 рад

3 режим: = 70°; Т = -50°С; t = 11,58 с; f = 11,57 Гц, = 59,6 рад/с;

М т = 2,49 Н*м; М н = 0,764 Н*м; Р изб = 3,699 атм;

т

Т н = 2,9 -10 -3 с, = 0,098, k Щ = 1367.

Результаты расчета приведены в таблицах 1.9.7-1.9.9.

Таблица 1.9.7

U bx = 0,088 рад

Таблица 1.9.8

U bx = 0,314 рад

Таблица 1.9.9

U bx = 0,314 рад

70°; Т = -50°С; t = 11,58 с; f = 11,57 Гц, = 59,6 рад/с;

М т = 2,49; М н = 0,764 Н*м; Р изб = 3,699 атм;

w 0 = 72,76 рад/с, = 0,307, m т = 1,74, Т с = 0,024с, Т г = 0,0074с,

Т н = 2,9 -10 -3 с, = 0,098, = 1367.

4 режим: = 0°; Т = +50°С; t = 1,5 с; f = 13,75Гц, = 58,02 рад/с;

М т = 30,05 Н*м; М н = 4,8 Н*м; Р изб = 44,53 атм;

w о = 86,4 рад/с, = 0,16, m m = 10,9, Т с = 0,047с, Т г = 0,0076с,

Т н = 1,17-10- 3 с, = 0,04, k Щ = 1331.

Результаты расчета приведены в таблицах 1.9.10-1.9.12.

Таблица 1.9.10

U bx = 0,088 рад

Таблица 1.9.11

U bx = 0,314 рад

Таблица 1.9.12

U bx = 0,44 рад

5 режим: = 70°; Т = -50°С; t = 5,8 с; f = 12,96 Гц, = 55 рад/с;

M ffl = 8,38 Н*м; М н = 2,502 Н * м; Р изб = 12,41 атм;

w 0 = 81,4 рад/с, у = 0,3, m m = 5,686, Т с = 0,0267с, Т г = 0,008с,

Т н = 1,16 -10" 3 с, ж = 0,054, к Щ = 1261,5.

Результаты расчета приведены в таблицах 1.9.13-1.9.15.

Таблица 1.9.13

U BX = 0,088 рад

Таблица 1.9.14

U BX = 0,314 рад

Таблица 1.9.15

U BX = 0,314 рад

Подобные документы

    Проект рулевого привода для малогабаритных летательных аппаратов, полет которых происходит в плотных слоях атмосферы. Технические требования к составным частям автоколебательной системы рулевого привода. Конструкции и принцип действия рулевого привода.

    дипломная работа , добавлен 10.09.2010

    Кинематический и энергетический расчет привода. Подбор электродвигателя, расчет открытой передачи. Проверочный расчет шпоночных соединений. Описание системы сборки, смазки и регулировки узлов привода. Проектирование опорной конструкции привода.

    курсовая работа , добавлен 06.04.2014

    Обоснование выбора нового привода коробки скоростей. Разработка зубчатой передачи и расчет шпинделя на усталостное сопротивление. Проектирование узлов подшипников качения и прогиба на конце шпинделя, динамических характеристик привода и системы смазки.

    курсовая работа , добавлен 09.09.2010

    Производители, описание конструкции, преимущества использования системы верхнего привода в буровых работах. Обоснование выбора кинематической схемы привода, проектирование валов редуктора. Укрупненный технологический процесс изготовления детали.

    дипломная работа , добавлен 18.04.2011

    Проектирование исполнительного двигателя системы газового рулевого привода. Анализ применения пневматических и газовых исполнительных устройств. Построение принципиальной схемы рулевого тракта. Обзор функциональных элементов систем рулевого привода.

    курсовая работа , добавлен 20.06.2012

    Обоснование выбора электродвигателя и кинематический расчет привода к машине для прессования кормов. Расчет общих параметров зубчатых передач, валов и подшипников привода. Конструктивные элементы соединений валов привода и расчет клиноременной передачи.

    контрольная работа , добавлен 29.08.2013

    Выбор структурной схемы привода и гидроцилиндра. Расчет конструктивных элементов гидропривода: насоса, электродвигателя, предохранительного клапана, гидрораспределителя. Нюансы построения нелинейной математической модели гидропривода. Переходные процессы.

    курсовая работа , добавлен 24.10.2012

    Обзор приводов и систем управления путевых машин. Расчет параметров привода транспортера. Разработка принципиальной гидравлической схемы машины. Расчет параметров и подбор элементов гидропривода, механических компонентов привода и электродвигателей.

    курсовая работа , добавлен 19.04.2011

    Кинематический и энергетический расчет привода электродвигателя и открытой клиноременной передачи. Проверочный расчет шпоночных соединений и подбор муфты. Описание конструкции рамы автомобиля, сборки, регулировки и смазки узлов привода электродвигателя.

    курсовая работа , добавлен 17.06.2017

    Проектирование и расчет привода, зубчатой передачи и узла привода. Силовая схема привода. Проверочный расчет подшипников качения, промежуточного вала и шпоночных соединений. Выбор смазочных материалов. Построение допусков для соединений основных деталей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Основная часть

1.1 Классификация приводов

1.3 Технические требование к рулевому приводу

1.7 Проектирование управляющего электромагнита

1.8 Технические требования к составным частям автоколебательной системы рулевого привода

2. Конструкторская часть

3. Технологическая часть

3.1 Теоретические сведения

4. Экономика

4.1 Введение

4.3 Выводы

5. Охрана труда

5.1 Введение

5.2 Анализ вредных и опасных факторов при расчёте и проектировании замкнутой системы ВДРП

5.3.1 Расчёт освещённости

5.3.2 Шум на рабочем месте

5.3.3 Защита от электромагнитного и рентгеновского излучения

5.3.4 Электробезопасность

5.3.5 Пожарная безопасность

5.4 Охрана окружающей среды

5.5 Выводы

Заключение

Список использованной литературы

Введение

В настоящее время к разработке приводов для малогабаритных управляемых ракет (МУР) предъявляются все более жесткие требования по техническим и эксплуатационным характеристикам. Поэтому процесс создания перспективных МУР должен основываться не только на усовершенствовании ранее разработанных конструкций и схем реализации приводов, но и на поиске новых технических решений, отличающихся от традиционных и дающих очередной скачок в развитии данного вида техники. Таким принципиально новым решением оказалось создание и использование так называемых воздушно-динамических рулевых приводов (ВДРП).

Ранее применяемые рулевые привода традиционной конструкции со специальным источником питания обладают следующими недостатками: во-первых, они обеспечивают мощность источников на уровне максимально потребной, что необходимо только лишь на определенном участке полета; во-вторых, при повышении дальности и времени полета масса источника питания увеличивается. Ужесточающиеся массогабаритные характеристики не позволяют реализовать традиционные привода со специальными системами согласования мощности привода с мощностью, расходуемой на управление. Поэтому рациональным решением явился отказ от специального источника питания и использование для перемещения рулевых органов энергии движения ракеты в газовой среде, т.е. использование энергии обтекающего корпус ракеты воздушного потока.

Основой данного технического решения является процесс трансформации энергии двигательной установки, сообщающей ракете кинетическую энергию движения. В результате движения на корпусе ракеты возникает распределенное поле давлений, определяющее силу ее лобового сопротивления в обтекающем ракету потоке воздуха. Располагая устройства забора и сброса воздуха на корпусе в зонах соответственно повышенного или пониженного давления, формируют рабочий поток определенной мощности, при этом в соответствии с законом сохранения энергии возрастает коэффициент лобового сопротивления. Последнее, при использовании воздушно-динамических рулевых приводов требуется увеличение массы пороховой шашки двигательной установки для сохранения неизменными времени полета и величины конечной скорости. Однако анализ соотношения масс показывает, что эффективность данного технического решения по сравнению с рулевыми приводами, имеющими специальный источник питания, тем выше, чем больше максимальная скорость и время управляемого участка полета по сравнению со временем работы двигательной установки. При этом достигается уменьшение массы пассивных элементов конструкции и повышение технологичности за счет исключения трудоемких элементов конструкции: аккумуляторов давления, трубопроводов и т.п. Отличительной особенностью является то, что он функционирует практически все время, пока движется ракета, а использование единого воздушного потока, нагружающего рулевые органы воздушно-динамических рулевых приводов и одновременно являющегося энергоносителем для сохранения неизменности функциональных характеристик по времени полета. Практическая реализация воздушно динамических рулевых приводов с различными типами силовых систем показала их значительное превосходство по функциональным, массогабаритным и техническо-технологическим характеристикам над приводами традиционной конструкции. Поэтому в настоящее время актуальной является проблема оснащения вновь разрабатываемых ракет приводами воздушно-динамического типа, а значит и разработки эффективных методик и алгоритмов их проектирования.

1. ОСНОВНАЯ ЧАСТЬ

Управление летательным аппаратом (ЛА) является важнейшей научной и практической проблемой современного самолето- и ракетостро е ния.

Для обеспечения полета ЛА по требуемой траектории применяется совокупность различных технических средств, представляющая собой систему упра вления.

По функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы:

устройства формирования управляющего воздействия с сигнала управления;

органы управления, которые создают управляющие усилия;

рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием.

Так как данный дипломный проект посвящен расчёту и проектиров а нию замкнутой системы рулевого привода, рассмотрим более подробно 3-тью группу устройств.

Рулевые приводы осуществляют в системе управления функционал ь ную взаимосвязь между устройствами первой и второй групп. Поэтому н а ряду с функциональными элементами, обеспечивающими создание силов о го воздействия на органы управления (источники питания, кинематич е ски связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функционал ь ные элементы, которые устанавливают соответствие этого силового сигн а ла формируемому в системе управления управляющему сигналу (преобр а зователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датч и ки).

Для конкретизации областей исследования задач, стоящих при разработке рулевых приводов, в их составе выделяют силовую и управля ющую системы. Силовая система объединяет функциональные элементы рулевого привода, которые непосредственно участвуют в преобразовании энергии источника питания в механическую работу, связанную с перемещением позиционно нагруженных органов управления.

Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.

Структура, характеристики и конструкция рулевого привода определяются типом летательного аппарата. В данном дипломном проекте рассматривается рулевой привод для малогабаритных ЛА, полет которых происходит в плотных слоях атмосферы. Такие рулевые приводы осуществляют перемещение, как правило, поворотных аэродинамических рулей ЛА и характеризуются высоким быстродействием, способностью развивать значительные усилия при низкой массе и малых габаритах конструкции. Их энергетические и габаритно-массовые характеристики существенно зависят от вида используемой энергии.

Бурное развитие ЛА в пятидесятых годах заставило применять пневмопривод с воздушным аккумулятором давления в системах управления ЛА из-за того, что он был наиболее дешевым, простым и надежным рулевым механизмом.

В шестидесятых годах получили распространение рулевой привод на горячем газе, широко применяемый и в настоящее время. Переход от воздушного аккумулятора давления в системах рулевых приводов, занимающего значительный объем в ЛА, к малогабаритному и простому в изготовлении пороховому генератору газа позволил улучшить габаритно-массовые и эксплутационные характеристики рулевых приводов.

Создание в семидесятых годах рулевого привода без бортового источника питания - воздушно-динамического - положило начало новому этапу совершенствования рулевых приводов малогабаритных ЛА.

Следует также упомянуть о существовании электромагнитных рулевых приводов, в которых управления лопастями происходит напрямую силовым электромагнитом, напитываемым от аккумуляторной батареи. Однако они также не получили широкого применения вследствие малой мощности и большого веса источника питания электромагнита.

1.1 Классификация приводов

Приводы лопастей предназначены для преобразования электрич е ских сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного дв и гателя.

Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и нео б ходимое ускорение при обработке заданных выходных сигналов с требуемой динамич е ской точностью.

На базе уже существующих конструкций приводы могут быть кла ссифицированы:

по типу силовой системы:

воздушно - динамические;

пневматические;

горячегазовые;

электромагнитные;

по принципу управления лопастями:

релейное двух и трехпозиционное управление;

пропорциональное управление;

по схеме управляющей системы:

автоколебательная с двух и трехпозиционным управлением;

самонастраивающаяся с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

автоколебательная с генератором вынуждающих колебаний и с двух и трехпозиционным управлением;

по типу исполнительного двигателя:

одностороннего и двух стороннего действия;

полуоткрытого и закрытого типа;

по типу распределительного устройства:

поворотный золотник на входе, на выходе, на входе и выходе одновременно;

струйная трубка;

клапанное распределительное устройство на входе, выходе, входе и выходе одновременно.

1.2 Обоснование выбора типа привода

Рулевой привод предназначен для преобразования электрических сигналов, поступающих с наземной аппаратуры управления, в соответствующие угловые отклонения аэродинамических рулей, управляющих полетом летательных аппаратов.

При сравнении характеристик различных типов и схем рулевых приводов отмечено, что при заданных шарнирных нагрузках и требуемых динамических характеристиках целесообразно для обеспечения минимальных габаритов и массы летательного аппарата применение пропорционального рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха.

В этом случае исчезает необходимость размещения специального источника питания.

Для малогабаритных управляемых ракетных снарядов наиболее часто проектируются воздушно-динамические рулевые привода, обладающие рядом преимуществ:

· независимость массы и объёма рулевого привода от времени работы, так как отсутствует специальный источник питания;

соответствие потребного и развиваемого момента рулевого привода;

соответствие потребной и развиваемой скорости;

практически постоянство фазового сдвига на частоте вращения ракеты вследствие эквивалентности скорости привода и скор о сти ракеты по крену, движущего момента и момента шарни р ной нагрузки;

применение в конструкции недефицитных материалов вследствие низких давлений и температур рабочего тела.

Для сравнения характеристик различных типов приводов приведём следующую таблицу:

Таблица 1.1 Сравнительная характеристика различных типов приводов

Скорость ЛА

Тип рулевого привода

ВДРП с сил. сист. открытого типа

электромагнитный

ВДРП с сил. сист. закрытого типа

на горячем газе

на сжатом газе

Тип бортового источника питания

электрическая батарея

Баллон со сжатым гелием

Объём привода с источником питания,

Масса привода с ист. питания, кг

Трудоёмкость изготовления,

Наиб. момент нагрузки,

Наибольший развиваемый момент,

Диапазон изменения ФЧХ, град.

Анализ данных таблицы показывает, что ВДРП значительно превосходят по своим характеристикам рулевые приводы отечественных и зарубежных ЛА.
ВДРП управляемого ЛА с дозвуковыми скоростями полета по сравнению с электромагнитными рулевыми приводами ЛА имеет в 2.5 раза меньший объем, в 5 раз меньшую трудоемкость изготовления.
Рулевой привод ЛА с транс- и сверхзвуковыми скоростями полета по сравнению с рулевыми приводами отечественных ЛА и американского ЛА ТОУ имеет в 3-4 раза меньшую массу, в 4 раза меньшую трудоемкость изготовления.

1.3 Технические требования к рулевому приводу

Рулевой привод (РП) одноканальный. Рули складываются внутрь отсека. Пиротехническая задержка раскрытия рулей в течение

Зависимость отклонения рулей от входного сигнала - пропорциональная.

РП работает от скоростного напора воздуха. Зависимость избыточного давления P и на входе воздухозаборника от времени при различных температурах окружающей среды представлена на рис. 1.1.

Рис. 1.1. Зависимость избыточного давления P и на входе воздухозаборника от времени t.

РП должен быть работоспособным при:

· числах Маха (рис. 1.2)

· частотах вращения от 4 до 13 Гц (рис. 1.3)

Рис. 1.2 Зависимость избыточного давления от значений числа Маха

Рис. 1.3 Зависимость частоты вращения ракеты от времени t

шарнирных моментах, представленных на рис. 1.4

Рис. 1.4 Зависимость момента шарнирной нагрузки M ш от времени t

Изменение фазового сдвига с учётом частот вращения должно соответствовать значениям

Максимальный угол отклонения рулей должен быть ±15°.

1.4 Математическое описание функционирования воздушно-динамического привода

Состояние физического тела (однородного газа) в некотором проточном объеме в каждый момент времени характеризуется совокупностью следующих параметров:

давление;

удельный вес;

тепература.

Для этого газа, полагая его идеальным, справедливо уравнение состояния:

Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используется два закона:

закон сохранения энергии;

закон сохранения массы.

Принимаем допущение о том, что параметры газа являются медленно меняющимися по сравнению с изменением сигналов управления. Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений:

уравнения с медленно меняющимися координатами;

уравнения с быстро меняющимися координатами.

Расчет газодинамической системы привода по системе нелинейных алгебраических уравнений построен на основе схемы замещения (рис. 1.5).

Рис. 1.5 Схема замещения силовой системы

При разработке РП применяется система математических моделей:

а) нелинейная, используемая для расчета динамических характеристик РП;

б) модель параметрической идентификации, используемая для расчета конструктивных параметров исполнительного двигателя.

Нелинейная математическая модель получена на основе законов сохранения массы и энергии и включает в себя следующие уравнения:

для полости ресивера:

для рабочих полостей (i=1,2):

для полости отсека:

Законы сохранения массы можно записать в следующем виде:

для полости ресивера:

для рабочих полостей (i=1,2):

для полости отсека

Удельный приход (расход) энергии находим по следующим зависимостям:

Массовый секундный приход (расход) газа в рабочей полости определяется по формулам:

Функции режима течения определяются по формулам:

Полное математическое описание исполнительного двигателя включает в себя еще и уравнения, полученные из уравнения состояния. Они имеют вид:

полость ресивера:

рабочие полости (i=1,2):

полость отсека:

Для определения объёма имеем следующие зависимости:

Механическая подсистема исполнительного двигателя описывается следующим уравнением:

Эффективность сечения входного и выходного отверстий распределительного устройства типа ”струйная трубка” с достаточной точностью можно описать с помощью следующих уравнений:

для входного сечения:

для выходного сечения:

Коэффициент колебательности;

p П1,2 - давление в полостях привода;

k - показатель адиабаты;

П Р - удельный расход энергии в ресивере;

G Р1,2 - удельный массовый секундный расход рабочего тела в ресивере;

П П1,2 - удельный расход энергии в рабочих полостях;

G П1,2 - удельный массовый секундный расход рабочего тела в полостях;

S П - площадь поршня;

M - угол поворота и максимальный угол поворота рулей;

W 1,2 - объём рабочих полостей;

Т П1,2 - температура рабочего тела в полостях;

П1,2 - удельный вес рабочего тела в полостях;

R - универсальная газовая постоянная;

I - приведённый суммарный момент инерции подвижных частей;

f - коэффициент вязкого трения;

m ш () - жёсткость шарнирной нагрузки;

М СТР - момент сухого трения;

k 0 - газодинамический коэффициент;

p P - давление в ресивере;

Y P1,2 , Y П1,2 - газодинамические функции режима течения;

S ВХ1,2 , S ВЫХ1,2 - эффективные площади втекания и истечения в рабочих полостях;

p 0 - давление в отсеке;

с - коэффициент, характеризующий регулируемое втекание;

M - угол поворота и максимальный угол поворота якоря управляющего электромагнита;

а, У - коэффициенты, характеризующие регулируемое истечение.

1.5 Разработка рулевого привода

Необходимо спроектировать рулевой привод, обеспечивающий воспроизведение управляющих сигналов в полосе частот от 28 с -1 до 91 с -1 и амплитуд до 15° угла поворота рулей с фазовым сдвигом 15°±13°. Процесс разработки привода представлен на схеме рис. 1.6.

Разработка малогабаритной танковой управляемой ракеты накладывает существенные ограничения на габариты и массу рулевого привода. Кроме того, в настоящее время не менее актуальна разработка технологичных, выполненных из отечественных недефицитных материалов и, следовательно, имеющих низкую себестоимость рулевых приводов. Габариты и масса РП существенно зависят от потребной выходной мощности и определяются применяемыми типом и структурой системы привода. Для пропорционального закона управления рулевыми органами наименьшие габариты обеспечиваются при применении автоколебательной системы привода с двухпозиционным управлением (рис. 1.7).

В качестве привода управляемой ракеты выбран воздушно-динамический рулевой привод со струйным распределительным устройством.

Воздушно-динамический РП не требует специального источника питания, габариты которого в значительной степени зависят от времени работы и мощности привода.

Рис. 1.6 Алгоритм разработки рулевого привода

Рис. 1.7 Автоколебательная система привода с двухпозиционным управлением

Для воздушно-динамического привода характерно согласование действующих шарнирных нагрузок с развиваемым приводом моментом, а также скорости вращения по крену со скоростью перемещения рулей, вследствие чего по времени полёта обеспечивается практически постоянный фазовый сдвиг на частотах вращения ракеты по крену.

Стабильность динамических характеристик ВДРП по времени управляемого полёта ракеты позволяет расширить допуски на конструктивные параметры рулевых приводов, работающих на традиционных источниках питания: сжатом газе высокого давления, горячем пороховом газе, электрической энергии.

Выбранное распределительное устройство типа "струйная трубка" позволяет применить управляющий электромагнит поворотного типа, надёжный в работе при внешних воздействующих факторах. Нагрузка на управляющий электромагнит с распределительным устройством типа "струйная трубка" незначительна. Динамические характеристики управляющего электромагнита практически не зависят от величины входного давления.

Проектирование автоколебательной системы ВДРП проводится по математической модели параметрической идентификации:

Уравнение суммирующего устройства:

Уравнение корректирующего фильтра:

Уравнение релейного элемента усилителя:

Уравнение управляющего электромагнита:

Уравнение исполнительного двигателя:

Расчёт обобщённых и конструктивных параметров производится для режима наихудших энергетических возможностей, который соответствует максимуму отношения потребной мощности к развиваемой при отработке гармонического сигнала с амплитудой? 0 и частотой при шарнирной нагрузке, имеющей пружинный характер, т. е. из условия минимума энергетической функции привода:

где - частота вращения ракеты, рад/с;

Момент шарнирной нагрузки, Н м;

Газодинамическая функция режима течения (рис. 1.8);

Величина избыточного давления, Па;

Температура окружающей среды, К;

t - время полёта, с.

Режим наихудших энергетических возможностей соответствует полёта при температуре (рис. 1.9). Для указанного режима значения параметров следующие:

Число маха М ………………………………………………………1.17;

Момент шарнирной нагрузки ………………………-0.937;

Избыточное давление ………………………………..1.22?10 5 ;

Частота вращения по крену ……………………………..9.3±1.9.

Рис. 1.8 График зависимости числа Y от величины избыточного давления.

Рис. 1.9 Энергетическая функция привода

Значение выбирается из условия обеспечения фазовой частотной характеристики разомкнутого контура, близкой к заданному номинальному значению при возникновении ограничений выходной координаты силовой части привода. При таком значении? обеспечиваются меньшие фазовые сдвиги, чем при расчёте? по минимуму расхода, но расход рабочего тела через систему увеличивается, что в случае применения воздушно-динамического привода не является ограничением для проектирования.

Максимальный развиваемый момент определяется по зависимости:

Значение произведения площади поршня на плечо кинематической передачи определяется по зависимости:

Потребная скорость для обеспечения отработки гармонического сигнала рассчитывается по формуле:

Рис. 1.10 График зависимости числа? от величины избыточного давления

Структура и параметры автоколебательной системы воздушно-динамического привода определяются для режима наихудших фазовых сдвигов, соответствующего максимуму энергетической функции при нагрузке, имеющей характер перекомпенсации, то есть режима (рис. 1.11). Для указанного режима значения параметров следующие:

Число маха М ……………………………………………………..0.894;

Момент шарнирной нагрузки ………………………..0.265;

Избыточное давление ………………………………0.667?10 5 ;

Частота вращения по крену ……………………………….7.8±2.

Рис. 1.11 Энергетическая функция привода

Рассчитаем структуру и параметры автоколебательной системы ВДРП на соответствующего режима:

а) рассчитывается допустимая минимальная частота автоколебаний из условия обеспечения разноса рабочей частоты? 0 и частоты автоколебаний? а:

б) рассчитывается фазовый сдвиг? n и амплитудная характеристика A n исполнительного двигателя на рабочей частоте и частоте автоколебаний.

Рис. 1.12 Структурная схема исполнительного двигателя РП

Рассчитаем максимальную скорость на этом режиме, исходя из? m на предыдущем:

Тогда новое? m примет значение:

Из рис. 1.13 определим фазовые сдвиги и величины амплитудной характеристики исполнительного двигателя РП на рабочей частоте и частоте автоколебаний.

Для данного режима определены соответствующие значения:

в) определяется время эквивалентного запаздывания управляющего электромагнита:

где - фазовый сдвиг нелинейного элемента на частоте,

Фазовый сдвиг корректирующего фильтра на частоте автоколебаний, выбираемый при первой итерации равным нулю.

Рис. 1.13 Амплитудно-фазовая частотная характеристика исполнительного двигателя рулевого привода

г) рассчитываются фазовые характеристики разомкнутой и замкнутой автоколебательной системы воздушно-динамического привода.

Фазовая характеристика разомкнутой системы рассчитывается по следующей формуле:

Фазовый сдвиг исполнительного двигателя РП,

Фазовая характеристика управляющего электромагнита (рис. 1.15),

Фазовый сдвиг корректирующего фильтра (рис. 1.14),

Фазовый сдвиг нелинейного элемента, .

Фазовая характеристика замкнутой системы:

Амплитудная характеристика разомкнутой системы.

При необходим фильтр с ослаблением амплитудной характеристики на частоте автоколебаний:

Рис. 1.14 Амплитудно-фазовая частотная характеристика корректирующего фильтра

Рис. 1.15 Фазовая характеристика управляющего электромагнита

Фазовая характеристика разомкнутой системы воздушно динамического рулевого привода представлена на рис. 16, замкнутой - на рис. 1.17.

Рис. 1.16 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.17. Фазовая характеристика замкнутой системы ВДРП

1.6 Оценка влияния изменения параметров математической модели ВДРП на его характеристики

Проследим, каким образом влияют на характеристики привода изменения таких величин, как скорость движения рулей, момент шарнирной нагрузки, момент инерции рулей, время эквивалентного запаздывания управляющего электромагнита, а также коэффициенты трения.

Пусть и изменяются в пределе ±15%, а и f - на ±50%.

Наиболее существенные изменения происходят, когда вышеназванные величины изменяются одновременно либо в сторону уменьшения, либо в сторону увеличения. Рассмотрим два крайних случая:

1) и увеличим на 15%, а и f - на 50%.

Результаты отображены на рис. 1.18-1.20

Рис. 1.18 Амплитудно-фазовая характеристика исполнительного двигателя рулевого привода

Рис. 1.19 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.20 Фазовая характеристика замкнутой системы ВДРП

2) и уменьшим на 15%, а и f - на 50%

Результаты отображены на рис. 1.21-1.23

Рис. 1.21 Амплитудно-фазовая характеристика исполнительного двигателя рулевого привода

Рис. 1.22 Фазовая характеристика разомкнутой системы ВДРП

Рис. 1.23 Фазовая характеристика замкнутой системы ВДРП

Как можно заметить из вышеприведённых графиков, ни одно из проделанных изменений не привело к выходу рулевого привода из заданного коридора фазовых сдвигов (рис. 1.20 и 1.23), что свидетельствует о высокой динамической точности разрабатываемого ВДРП. Проверим, какую роль играют величины постоянных времени T ф1 и T ф2 .

Рассмотрим три варианта фильтра (рис. 1.24, 1.25):

Графики фазовых характеристик разомкнутой и замкнутой систем будут иметь вид, представленный на рис. 1.26-1.29.

Рис. 1.24 Амплитудные частотные характеристики нескольких вариантов корректирующего фильтра

Рис. 1.25 Фазовые частотные характеристики нескольких вариантов корректирующего фильтра

Рис. 1.26 Фазовые характеристики разомкнутой системы ВДРП

Рис. 1.27 Фазовые характеристики замкнутой системы ВДРП

Рис. 1.28 Фазовые характеристики разомкнутой системы ВДРП

Рис. 1.29 Фазовые характеристики замкнутой системы ВДРП.

1.7 Технические требования к составным частям автоколебательной системы рулевого привода

а) воздухозаборник должен обеспечивать:

Отношение площадей воздухозаборника к площади струйника:

Отношение площадей ресивера к площади струйника:

Выступание воздухозаборника за обтекатель не менее 5 мм.

б) рулевой привод должен обеспечивать:

Максимальную скорость при давлении

и температуре:

Максимальный развиваемый момент при давлении

Управляющий электромагнит в реальных условиях эксплуатации должен обеспечивать время эквивалентного запаздывания:

в) постоянные времени корректирующего фильтра должны быть:

1.8 Проектирование управляющего электромагнита

В качестве управляющего электромагнита выбираем нейтральный электромагнит с угловым перемещением якоря. Управляющий электромагнит, на оси которого закреплён струйник, установлен на основании распределительного устройства. Ток, протекающий через обмотки этого электромагнита, при поступлении команды управления, создает магнитный поток, притягивающий якорь к одному из упоров, разворачивая диск распределительного устройства в одно из крайних положений.

Расчёт параметров управляющего электромагнита проводится из обеспечения требуемых динамических характеристик при заданном напряжении питания и токе потребления обмоток управляющего электромагнита. Расчёт проводится графоаналитическим способом в соответствии с алгоритмом (см. рис. 1.30).

В данном дипломном проекте при проектировании ВДРП в целях унификации с ранее изготовленными подобными рулевыми приводами воспользуемся одним из уже существующих управляющих электромагнитов и расчёт производить не будем.

Размещено на http://www.allbest.ru/

Рис. 1.30 Алгоритм расчета УМ

2. КОНСТРУКТОРСКАЯ ЧАСТЬ

2.1 Описание конструкции рулевого привода

Рулевой привод предназначен для преобразования электрических сигналов, поступающих с наземной аппаратуры управления, в соответствующие угловые отклонения аэродинамических рулей, управляющих полетом летательных аппаратов. В данном дипломном проекте разработан автоколебательный одноканальный воздушно-динамический рулевой привод полуоткрытого типа с регулируемым на выходе распределительным устройством типа «струйная трубка» (рис. 2.1).

Рис. 2.1 Рулевой привод

1 - основание; 2 - поршень; 3 - руль; 4 - втулка; 5 - ось; - подшипник; 7 - пружина; 8 - вилка; 9 - потенциометр обратной связи;10 - шпангоут; 11 - трубка; 12 - фильтр; 13 - пружина; 14 - канал; 15 - приемное отверстие; 16 - поршень; 17 - чехол; 18 - манжета; 19 - основание; 20 - штифт; 21 - серьга; 22 - ось; 23 - ось; 24 - пружина; 25 - подшипник; 26 - корпус; 27 - планка;28 катушка управления; 29 - якорь; 30 - приемник; 31 - струйник; 32 - воздухозаборник; 33 - электромагнит управляющий;34 - электровоспламенитель; 35 - силовой цилиндр; 36 - планка.

Привод состоит из следующих основных частей:

а) исполнительный двигатель с аэродинамическими рулями;

б) управляющий электромагнит с распределительным устройством.

Базовой деталью рулевого привода является шпангоут 10, на котором установлены оси 5 с рулями 3, втулками 4, пружинами 7. Рули соединены между собой осью 22, на этой же оси находится вилка 8, связывающая рули с потенциометрическим датчиком обратной связи 9. Шпангоут 10 является базовой деталью, к которой крепится основание 1. На основании установлены два силовых цилиндра 35.

Управляющий электромагнит 33 состоит из корпуса 26, в котором на подшипниках 25 установлена ось 23 с якорем 29, двух катушек управления 28, соединенных планкой 27, закреплённой в корпусе 26, и пружины 24.

Силовой цилиндр 35 состоит из основания 19, на котором закреплена эластичная манжета 18, закрытая чехлом 17, поршня 16, соединённого с манжетой 18 и серьги 21, связывающей поршень 16 с осью 22.

Рули 3 и воздухозаборники 32 в сложенном положении удерживаются планкой 36, закреплённой штифтами 20 на шпангоуте 10.

2.2 Описание принципа действия рулевого привода

Принцип действия РП состоит в следующем.

При полёте управляемой ракеты встречный поток воздуха через отверстия в воздухозаборниках 32 проходит через струйное распределительное устройство в рабочие полости рулевых машин. В автоколебательном приводе генерируются автоколебания. С усилителя подается поочерёдно напряжение на одну или другую обмотки управляющего электромагнита. При поступлении сигнала в одну из обмоток, якорь притягивается к ней и устанавливает струйник напротив соответствующего окна приёмника. Воздух поступает в рабочую полость привода, и в ней устанавливается максимальное давление; в это время вторая рабочая полость опорожняется. Под действием разности давлений на поршни рулевых машин происходит поворот оси рулей. Разность средних давлений в полостях и угол поворота рулей пропорциональны входному сигналу.

3. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

3.1 Теоретические сведения

Сборка является заключительной стадией технологического процесса изготовления деталей.

К сборочно-технологическим процессам относят соединение деталей и сборочных единиц для образования изделия с его последующей регулировкой, контролем и испытанием.

Технологический процесс сборки осуществляют, руководствуясь нормативными документами, которые оформляются в соответствии с единой системой технологической документации (ЕСТД).

ЕСТД представляет собой комплекс стандартов, устанавливающих взаимосвязанные правила и положения о порядке разработки, оформления и обращения единой технологической документации для всех предприятий и организаций приборостроительных и машиностроительных отраслей промышленности.

Проектированием технологических процессов и составлением нормативной документации занимаются технологические отделы и бюро предприятия.

Для разработки технологического процесса сборки изделия или сборочной единицы технологу необходимо иметь сборочные чертежи, спецификацию деталей по сборочным единицам, технологические условия на сборку, испытания и приемку, годовой план выпуска изделия. Кроме того, в распоряжении технолога должны находиться данные о парке оборудования и электроснабжении цехов, о применяемом инструменте, приспособлениях, контрольно-измерительной аппаратуре, а также стандарты предприятия.

Подготовку к проектированию технологического процесса начинают с анализа конструкции по чертежам, схемам, техническим условиям и программе испытания. Проектирование технологического процесса сборки содержит следующие этапы:

1. Определение последовательности сборки.

2. Определение перечня и последовательности работ при сборке, построение схемы технологического процесса.

3. Нормирование операций.

4. Определение организационной формы сборки и синхронизация операций по ритму.

В данном разделе дипломного проекта рассмотрены первые три этапа.

3.2 Определение последовательности сборочного процесса

Основой для определения последовательности сборки изделия является конструкторская документация, в которой изделие разбито на сборочные единицы. Характерной особенностью сборочной единицы является возможность сборки обособленно от других частей изделия. Благодаря этому процесс сборки сложных изделий состоит из переходов, выполняемых не только последовательно друг за другом, но и параллельно друг другу.

3.3 Построение схемы технологического процесса сборки

Схема технологического процесса сборки служит для облегчения разработки основной технологической документации - маршрутных и операционных карт. Схема технологического процесса наглядно и детально отражает последовательность и структуру сборки, включая регулировку, контроль и испытания изделия.

Построение схемы ведется по следующим правилам:

1. Каждый элемент изделия имеет условное обозначение. Сборочные единицы принято обозначать квадратом, а детали - кругом. Стандартные и поставляемые изделия изображаются со штриховкой.

2. Приспособления, применяемые вместо деталей или сборочных единиц, без которых не может быть выполнена сборка, указываются на схемах как детали или сборочные единицы, но пунктиром.

3. Процесс сборки изображается линией, а переходы точками на этой линии. Линия проводится в направлении от базового элемента изделия к собранному объекту.

Соединение деталей или сборочной единицы с собранной ранее частью изделия или базовой деталью, использование материалов обозначается линией, присоединяемой к сборочной линии. Крепежные детали и прикрепляемые ими элементы изделия соединяются со сборочной линией в одной точке.

4. Снимаемые (демонтируемые) детали, сборочные элементы, приспособления указываются на схемах со стрелкой, направленной от линии сборки.

5. Схема поясняется указанием о выполнении соединений, регулировки и контроля при сборке.

4. ЭКОНОМИКА

4.1 Введение

Процесс создания и освоения новой техники является комплексным, охватывающим большой промежуток времени и большое количество исполнителей. Исходя из новизны создаваемого изделия и степени его комплексности в практике планирования СОНТ применяются два метода:

Метод, основанный на разработке ленточных планов - графиков;

Метод, основанный на разработке сетевых графиков.

Метод ленточных планов - графиков используется при относительно краткосрочных разработках и при небольших количествах исполнителей.

Сетевое планирование представляет собой систему планирования комплекса работ, направленную на достижение конечной цели.

4.2 Составление и расчёт сетевого графика

Сетевое планирование основано на графическом изображении комплекса работ, которое отображает их логическую последовательность, взаимосвязь и длительность. Сетевое планирование имеет значительное преимущество перед обычным методом планирования и управления:

- наиболее полно учитывается связь между различными работами;

- появляется возможность более эффективного распределения срока окончания работ или ресурсов;

- появляется возможность более эффективного распределения ресурсов за счёт оптимизации планов;

- возможность применения ЭВМ;

- наглядное и удобное изображение комплекса работ.

Сетевое планирование позволяет вести разработку в оптимальном режиме. Сетевая модель отображает логическую последовательность и взаимосвязь работ и изображается в виде графика, состоящего из стрелок и кружков.

Кружки на сетевом графике обозначают совершение отдельных событий, отображающих результаты выполнения работ. Продолжительности события не имеют.

Стрелки обозначают работы, то есть действия, которые совершаются для совершения событий. Работы имеют продолжительность, которая на графике указывается стрелкой.

Каждая работа имеет начало и окончание. На графике начало стрелки находится в предыдущем событии, а окончание в последующем.

Работы могут быть трёх типов:

- действительными;

- ожидаемыми;

- фиктивными.

Путем называется непрерывная последовательность работ между двумя событиями сетевого графика, в котором конечное событие каждой работы совпадает с начальным событием следующим за ней событием.

Существует три вида путей:

- полный путь (от начального до конечного события);

- предшествующий путь (от начального до данного события);

- последующий путь (от данного до конечного события).

Критическим путем является полный путь, имеющий наибольшую длительность. Критический путь определяет продолжительность процесса в целом.

Для завершения всего комплекса работ в более ранние сроки необходимо принимать меры по сокращению длительности работ, лежащих на критическом пути. При расчёте сетевых графиков определяют ранние и поздние сроки начала и окончания работ.

Ранний срок свершения события - это срок, необходимый для выполнения всех работ, предшествующих данному событию, т.к. это событие свершится только тогда, когда будут выполнены все работы, для которых оно является конечным (рис. 4.1).

Рис. 4.1 Ранний срок свершения события

Поздний срок свершения события - это такой срок, превышение которого вызовет аналогичную задержку наступления завершающего события графика. Поэтому расчет поздних сроков свершения событий осуществляется после нахождения критического пути по принципу, представленному на рис. 4.2.

Рис. 4.2 Поздний срок свершения события

Раннее начало каждой работы равно раннему сроку свершения начального в данной работе события:

Раннее окончание каждой работы определяется как сумма фона раннего начала и продолжительности ожидаемого времени выполнения этой работы:

Позднее окончание каждой работы равно позднему сроку свершения конечного события в работе:

Позднее начало работы определяется как разница между сроком позднего окончания и ожидаемым временем выполнения этой работы:

На основании рассчитанных ранних и поздних сроков начала и окончания работ определяются резервы времени работы.

Различают понятия полного и свободного резервов времени.

Резерв времени события - это промежуток времени, на который может быть отсрочено свершение этого события, без нарушения критического пути:

Полный резерв времени работы - это максимальный период времени, на который можно увеличить продолжительность данной работы, не изменяя критического пути:

Важным свойством этого резерва является то, что он может быть распределен между работами, лежащими на следующем пути, т.е. он является резервом всего последующего пути.

Свободный резерв времени работы - это промежуток времени, на который может быть отодвинуто окончание данной работы, не изменяя ранних сроков начала последующих работ

Резервы времени работы позволяют маневрировать сроками начала и окончания работ, устанавливая наиболее благоприятные сроки выполнения работы с точки зрения рациональной загрузки ресурсов, выделяемых на достижение конечной цели. Резервами работ можно пользоваться также для выявления критического пути. Представляя цепную связь работ, он проходит по работам, не имеющим резервов.

Одними из важнейших операций при анализе рассчитанных параметров сетевого графика являются определение коэффициентов напряженности работ и вероятности свершения завершающего события в заданный срок.

Коэффициент напряженности работы характеризует относительную сложность соблюдения сроков выполнения работ на некритических путях:

где - продолжительность максимального пути, проходящего через работу ij;

Продолжительность критического пути;

Продолжительность отрезка максимального пути работы, совпадающего с критическим путем ij.

Контролировать правильность расчета сетевого графика необход и мо по параметрам полного резерва времени и коэффициента напряженн о сти. Причём резерв времени работ, лежащих на критическом пути всегда равен нулю, а к о эффициент напряженности работ равен единице.

Таблица 4.1. Картотека событий

№ события

Перечень событий

ТЗ получено

ТЗ проработано

Литература подобрана

Литература изучена

Математическая модель выбрана

Расчет характеристик привода сделан

Выбор типа и схемы привода сделан

Расчет конструктивных и обобщенных параметров проведен

Анализ влияния различных факторов на характеристики привода проведен

Техническая документация выпущена

Рабочие чертежи разработаны

Эскизный проект выпущен

Техническая документация выпущена и выдана в производство

Материалы заказаны

Материалы поставлены

Комплектующие изделий заказаны

Детали изготовлены и комплектующие изделия поставлены

ПИ выпущено и произведена сборка и настройка образца

Испытания произведены

ТП выпущено и произведена корректировка ТД

Принято решение о серийном выпуске

Таблица 4.2 Картотека работ

№ работы

Перечень работ

Продолжительность, дни

Затраты на выполнение работ, руб.

Выдача ТЗ

Подбор литературы

Изучение литературы

Фиктивная работа

Выбор мат. модели

Расчёт характеристик привода

Фиктивная работа

Выбор типа и схемы привода

Расчёт конструктивных и обобщённых параметров привода

Анализ влияния различных факторов на характеристики привода

Выпуск ТД

Разработка рабочих чертежей

Выпуск эскизного проекта

Выпуск ТД и выдача ее в производство

Заказ материалов

Поставка материалов

Подготовка производства

Заказ комплектующих изделий

Поставка комплектующих тизделий

Изготовление деталей

Сборка и настройка образца

Выпуск ПИ

Проведение испытаний

Корректировка технической документации

Выпуск технического проекта

Принятие решения о серийном выпуске

Расчёт сетевого графика проведён с применением ЭВМ. Результаты представлены в виде таблицы 1.

Из расчетов видим, что критический путь проходит через события:

Продолжительность критического пути 111.5 дней.

Расчёт вероятности наступления завершающего события в заданный срок совершенно необходим, когда установленный директивный срок оказывается меньше срока свершения завершающего события, рассчитанного по величине критического пути.

Вероятность свершения завершающего события в заданный срок можно определить по формуле:

где - значение дифференциальной функции нормального распределения вероятностей, называемой функцией Лапласа, определяют в зависимости от ее аргумента х по таблице, приведенной в приложении 1.

где - среднеквадратическое отклонение срока наступления завершающего события;

- продолжительность работы ij, лежащей на критическом пути;

n - число работ критического пути;

- среднее арифметическая для параметра.

Для величины имеются вполне определенные границы допустимого риска. При > 0.65 можно утверждать, что на работах критического пути имеются избыточные ресурсы, следовательно общая продолжительность работ может быть сокращена. При < 0.35 опасность срыва заданного срока наступления завершающего события настолько велика, что необходимо повторное планирование с перераспределением ресурсов, т.е. оптимизация сетевого графика.

Оптимизация сетевого графика в зависимости от полноты решаемых задач может быть разделена на частную и комплексную. Видами частной оптимизации являются: минимизация стоимости всего комплекса работ при заданном времени выполнения проекта, минимизация времени выполнения разработки при заданной ее стоимости. Комплексная оптимизация - это нахождение оптимума в соотношениях величин затрат и сроков выполнения проекта.

Проведением оптимизации сетевого графика стадия составления исходного плана заканчивается. Далее начинается стадия оперативного управления ходом работ, когда в службу сетевого планирования поступает с определенной периодичностью информация о фактическом ходе смоделированного процесса. Производятся перерасчеты графика и разрабатываются мероприятия по ликвидации возникших от него отклонений.

Таким образом, в целом сетевой график позволяет наиболее рационально построить план работы, установить строгую последовательность и очередность в выполнении всех необходимых операций и действий. С помощью сетевого графика можно с достаточной точностью определить сроки свершения каждого события и, следовательно, срок достижения результата - завершающего события; оптимизировать использование выделяемых ресурсов; организовать контроль, наблюдение и управление действиями ответственных исполнителей с помощью ЭВМ.

4.3 Выводы

1. Проведя расчёт параметров сетевого графика, мы видим, что при длине критического пути 111.5 дней затраты на комплекс работ составляют 18 338 рублей.

2. Проведя оптимизацию сетевого графика, исходя из минимума затрат, мы видим, что при той же длине критического пути затраты на комплекс работ составляют 18 213 рублей.

3. Проведя оптимизацию сетевого графика, исходя из минимума длины критического пути, при директивном сроке, длина критического пути составляет 103 дней, при затратах на комплекс работ 20 358 рублей.

4. Проведя комплексную оптимизацию, исходя из минимума затрат и минимума длины критического пути, при директивном сроке, видно, что длина критического пути оставляет 103 дня, при затратах на комплекс работ 20 358 рублей.

5. ОХРАНА ТРУДА

5.1 Введ ение

При проектировании ВДРП на работоспособность инженера влияет организация трудового процесса, метеорологические условия производст венной среды, шум, освещение производственного помещения, его температура и многое др у гое.

Безопасность труда обеспечивается соблюдением правил по техн ике безопасности, санитарных норм и правил. Также для обеспечения безопасности труда должны предъявляться требования к сооружениям, производственным зданиям, оборудованию. При этом необходимо обеспечивать защиту рабочих мест от воздействия опасных и вредных факторов, содержать рабочие места в строгом соответствии с санитарно-гигиеническими нормами.

В данной части дипломного проекта будут рассмотрены все вышеп е речисленные факторы, влияющие на здоровье и безопасность человека, и будут разработаны меры по предотвращению вредных и опасных факт о ров.

5.2 Анализ вредных и опасных факторов при расчёте и проектировании замкнутой системы ВДРП

Расчёт и проектирование - это работа с чертежами, с технической документацией, с расчётами, с ЭВМ. Инженеру приходится часами работать над чертежами, книгами, поэтому в помещении, где он работает должно быть освещение соответствующее санитарным нормам и правилам. Правильно спроектированное и выполненное освещение на предприятии обеспечивает возможность нормальной производственной деятельности. Сохранность зрения человека, состояние его центральной нервной системы и безопасность на производстве в значительной мере зависят от условий освещения.

При недостаточном освещении в помещении, где работает инженер, у работающего постепенно ухудшается зрение, а, следовательно, и его общее физическое состояние, и работоспособность.

Расчёт и проектирование замкнутой системы ВДРП осуществляется с применением персонального компьютера с соответствующим программным обеспечением. Эксплуатация ПЭВМ связана с воздействием на работающего таких вредных и опасных факторов, как повышенная температура окружающей среды, недостаток естественного освещения, недостаточная освещенность рабочей зоны, электрический ток, статическое электричество, шум, повышенный уровень электромагнитного, ультрафиолетового и инфракрасного излучений.

Работа инженеров-исследователей и конструкторов связана с воздействием таких психофизических факторов, как умственное перенапряжение, напряжение зрительных и слуховых анализаторов, монотонность труда, эмоциональные перегрузки.

Воздействие указанных неблагоприятных факторов приводит к снижению работоспособности, вызванной развивающимся утомлением. Появление и развитие утомления связано с изменениями, возникающими в процессе работы в центральной нервной системе, с тормозными процессами в коре головного мозга. Так при длительной работе за видеомонитором, у человека возникает повышенная утомляемость и головная боль. Длительное нахождение человека в зоне комбинированного воздействия различных неблагоприятных факторов может привести к профессиональным заболеваниям, например, ухудшение зрения, бессонница.

После разработки технологических факторов и технической документации изготавливают экспериментальный образец и производят испытания на испытательных стендах. При этом возникает опасность возникновения пожара или поражения электрическим током.

5.3 Меры по недопущению вредных и опасных факторов

Для предотвращения вредных и опасных факторов на предприятии при строительстве производственных зданий необходимо соблюдать все требовании санитарных норм и правил. Также необходимо регулярно производить и н структаж работников предприятия по технике безопасности, надо постоянно следить за электрооборудованием и за наличием противопожа р ных средств.

Подобные документы

    Проектирование исполнительного двигателя системы газового рулевого привода. Анализ применения пневматических и газовых исполнительных устройств. Построение принципиальной схемы рулевого тракта. Обзор функциональных элементов систем рулевого привода.

    курсовая работа , добавлен 20.06.2012

    Обоснование выбора структуры привода, составление его математической модели. Расчет конструктивных параметров, управляющего электромагнита и динамических характеристик привода, тепловой расчет конструкции. Технологический процесс сборки рулевой машины.

    дипломная работа , добавлен 10.09.2010

    Кинематический и энергетический расчет привода. Подбор электродвигателя, расчет открытой передачи. Проверочный расчет шпоночных соединений. Описание системы сборки, смазки и регулировки узлов привода. Проектирование опорной конструкции привода.

    курсовая работа , добавлен 06.04.2014

    Производители, описание конструкции, преимущества использования системы верхнего привода в буровых работах. Обоснование выбора кинематической схемы привода, проектирование валов редуктора. Укрупненный технологический процесс изготовления детали.

    дипломная работа , добавлен 18.04.2011

    Общие сведения об автомобиле. Проектирование рулевого управления, описание его назначения и основных требований. Обоснование выбора реечного управления и определение параметров рулевой трапеции. Расчет параметров зацепления механизма "шестерня-рейка".

    дипломная работа , добавлен 13.03.2011

    Классификация смесителей по принципу действия. Определение расчётной мощности двигателя. Описание порядка сборки и обслуживания привода. Конструктивный расчёт цепной передачи, шпоночных соединений. Рекомендации по выбору масла и смазки всех узлов привода.

    курсовая работа , добавлен 27.10.2014

    Расчёт энергосиловых и кинематических параметров привода. Передаточные числа по ступеням привода и частоты вращения валов. Расчёт конической передачи с круговым зубом. Проверка по контактным напряжениям. Расчёт валов, шпонок и подбор подшипников.

    курсовая работа , добавлен 09.01.2014

    Принцип действия привода шнекового питателя. Подбор электродвигателя, расчет цилиндрического редуктора. Алгоритм расчета клиноременной, цепной передачи. Рекомендации по выбору масла и смазки узлов привода. Сборка и обслуживание основных элементов привода.

    контрольная работа , добавлен 04.11.2012

    Разработка привода ленточного транспортера, состоящего из электродвигателя, клиноременной передачи и двухступенчатого цилиндрического зубчатого редуктора. Кинематический и силовой расчет привода. Форма и размеры деталей редуктора и плиты привода.

    курсовая работа , добавлен 18.12.2010

    Проектирование и расчет привода, зубчатой передачи и узла привода. Силовая схема привода. Проверочный расчет подшипников качения, промежуточного вала и шпоночных соединений. Выбор смазочных материалов. Построение допусков для соединений основных деталей.

Вам также будет интересно:

Кто придумал Паровой двигатель - Когда Изобрели?
Определение Паровая машина - двигатель внешнего сгорания, который преобразовывает энергию...
Многие ведущие зарубежные автопроизводители ежегодно выпускают усовершенствованные...
Запрещающие знаки Знак
1. При эксплуатации эвакуационных путей и выходов руководитель организации обеспечивает...
Когда отменят эра глонасс на ввозимые автомобили
Как регламентируется ввоз автомобиля без Эра-Глонасс, и какие требования выставляет таможня...
Водородный двигатель: принцип работы и устройство
03.02.2016 Ресурсы нашей планеты не бесконечны, в том числе и запасы «черного золота»...