Автомобильный - Mirtaxibel

Запрещающие знаки Знак "Запрещается использовать в качестве питьевой воды" распечатать и скачать

Когда отменят эра глонасс на ввозимые автомобили

Водородный двигатель: принцип работы и устройство

Как заводится зимой в сильные морозы

Как заправить зажигалку бензином

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Красная Крета — яркий и стильный на дороге Грета черный цвет

Как изменить вращение асинхронного электродвигателя

Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз

Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом

Преимущества приобретения авто в лизинг

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Умзч на "телевизионных" лампах с трансформаторами тн Однотактный ламповый усилитель на 6п36с своими руками

Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7) Распиновка к561ла7

Поиск неисправностей в электронных схемах. Методы проверки стабилитрона мультиметром и тестером

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный - к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300...500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200...500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

В радиолюбительской и профессиональной практике часто возникает необхо­димость проверить исправность простых цифровых микросхем. Использовать для этого сложные логические тестеры и анализаторы вряд ли целесообразно. Вполне можно обойтись тестером для проверки логических элементов различных микросхем.

Логический тестер простых цифровых микросхем комбинационной логики по­зволяет проверять исправность каждого в отдельности логического элемента (ЛЭ) микросхемы с логическими функциями двух входных переменных 2И, 2ИЛИ, 2ИСКЛ.ИЛИ и их инверсиями для популярных серий ТТЛ и КМОП. К ним относятся микросхемы функционапьных типов ЛАЗ, ЛА8, ЛА9, ЛА11-ЛА13, ЛА18, ЛА21, ЛА23; ЛЕ1, ЛЕ5, ЛЕ6, ЛЕ10, ЛЕ11; ЛИ1, Л И 2, ЛИ8; Л Л 1 , Л Л 2, ЛЛ4; Л П 5, Л П 8 , ЛП12; ТЛЗ серий ТТЛ (ТТЛ Ш) К155, К158, К131, К531, К555, КР1531, КР1533 и других, а также серий КМОП КР1554, 74 НС (1564) и типов КТЗ, ЛА7, ЛЕ5, ЛИ2, Л П 2, ЛП14, ТЛ1 серий КМОП К176, К561, 564, КР1561 . Прибор позволяет определять ло­гическую функцию (в пределах шести указанных) и цоколевку микросхем с двух­входовыми ЛЭ. Кроме того, тестером можно проверять исправность работы бипо­лярных транзисторов, диодов и различных р-n переходов.

Простота конструкции и удобство пользования им, наряду с достаточно широ­кими функциональными возможностями и компактным с исполнением автономным питанием от батареи «Корунд», позволяют использовать этот прибор не только в любительской радиолаборатории или, например, при покупке приборов на радио­рынках, но и для входного контроля при мелкосерийном производстве РЭА.

Схема тестера приведена на рисунке. Генератор импульсов на DD1.1, DD1.2 с частотой около 20 Гц формирует с помощью двух двоичных делителей частоты на триггерах DD2.1, DD2.2 периодическую тестовую последовательность логиче­ских сигналов для формирования таблицы истинности логической функции двух входных переменных - 00, 01, 10, 11. Из этой тестовой последовательности обра­зуются опорные сигналы логических функций 2И (элемент DD3.1), 2ИСКЛ.ИЛИ (элемент DD1.3) и 2ИЛИ (элементы DD3.2, DD3.3). Выбор функции осуществляется с помощью переключателя SB3, элемент DD3.4 инвертирует сигнал функции, а ин­версия функции выбирается переключателем SB4 (например, 2И-НЕ, как показано на рисунке).

При равенстве проверяемого и опорного логических сигналов выходной сигнал ЛЭ сравнения равен нулю и светодиод не светится. Если же проверяемый и опор­ный сигналы различны, то соответствующий ошибочному проверяемому сигналу ЛЭ сравнения высоким выходным уровнем включает светодиод, индицируя неисп­равность данного ЛЭ (точнее, отличие логической функции элемента от опорной).

Для облегчения идентификации неисправного ЛЭ светодиоды удобно располо­жить вблизи соответствующих выводов проверяемой микросхемы (условно пока­занных на правом поле рисунка) контактной панели с DD5. При полностью исправ­ной микросхеме DD5 все светодиоды погашены, а при ошибке хотя бы в одном ЛЭ будет мигать или постоянно светиться один или несколько светодиодов, сигнали­зируя о неисправности. Таким образом, данный логический тестер позволит вы­явить один неисправный ЛЭ при остальных годных, что может оказаться полезным в радиолюбительской практике.

Переключателями SB1 и SB2 осуществляется выбор цоколевки проверяемой микросхемы в соответствии с приводимой таблицей (на рисунке показано положе­ние переключателей SB1, SB2 для проверки микросхем ЛА7, ЛЕ5, ЛП2 и других се­рий КМОП - К176, К561, 564, КР1561). Если цоколевка или логическая функция проверяемой микросхемы неизвестны, то их можно определить (в пределах функ­циональных возможностей данного тестера), перебирая положения переключате­лей SB 1, SB2, SA3. SB4.

Этим логическим тестером можно также проверять исправность биполярных транзисторов, диодов и различных р-n переходов. Для этого в схему введены эле­менты SB5, R17, R18, HL6 t HL7 и зажимы для подключения транзисторов «Э», «Б», «К» и диодов «VD».

Переключателем SB5 тестер переводится из режима проверки микросхем (показан на схеме) в режим проверки транзисторов. При верхнем по схеме поло­жении переключателя SB5 опорный логический уровень подается только на эле­мент DD4.4, а зажимы эмиттера «Э» и базы «Б» через резисторы R17, R18 «опраши­ваются» сигналами тестовой последовательности с неинвертирующих выходов триггеров. На другой вход элемента сравнения DD4.4, соединенный с зажимом «К» (коллектор), через резистор R16 поступает уровень, противофазный «эмиттерно- му» (с инверсного выхода триггера DD2.1).

Название положения

Положение SB1

Положение SB2

Серии микросхем

КМОП: К561, К170, 564, КР1561

ТТЛ/ТТЛШ: К155, К555, 133, 533, К531, КР1533, КР1531 и др. КМОП: КР1554, 74НС(1564)

Цоколевка панели: вход, вход-выход

1,2 = 3 5, 6 = 4 8, 9= 10 12, 13* 11

2, 3 = 1 5, 6 = 4 8, 9= 10 11, 12= 13

1,2 = 3 4, 5 = 6 9, 10 = 8 12, 13= 11

Тмл (лог. функция микросхемы)

ЛЕ5 (ИЛИ-НЕ)

ЛП2(ИСКЛ. ИЛИ) ЛП14(ИСКЛ. ИЛИ) ТЛ2 (И-НЕ)

ЛАв (И-НЕ)

ЛЕ1 (ИЛИ-НЕ) ЛЕ5 (ИЛИ-НЕ) ЛЕб (ИЛИ-НЕ) ЛЕЮ (ИЛИ-НЕ) ЛЕ11 (ЙЛИ-НЕ)

ЛАЗ, ЛА9 (И-НЕ)

ЛА11, ЛА13 (И-НЕ) ЛА21, ЛА23 (И-НЕ) ЛА18, ТЛЗ (И-НЕ)

ЛИ1, ЛИ2, ЛИ8 (И)

ЛЛ1, ЛЛ2 (ИЛИ)

ЛП5, ЛП12 (ИСКЛ. ИЛИ) ЛП8 (проверка по функ­ции ИЛИ)

При подключении к этим зажимам одноименных выводов исправного транзис­тора на его коллекторе формируется периодический сигнал, соответствующий ло­гической функции 2ИЛИ-НЕдля транзисторов структуры п-р-п и 2И-НЕдля тран­зисторов структуры р-п-р, т. е. выбор типа проводимости проверяемого транзис­тора осуществляется переключателями SB3, SB4. В одной из четырех фаз сигна­лов опроса транзистор включается по схеме с общим эмиттером (если пренебречь защитным резистором R17), при этом резистор R18 задает ток базы транзистора, а резистор R16 является его коллекторной нагрузкой.

Одновременно тестовая последовательность с неинвертирующих выходов триггеров DD2.1, DD2.2 подается на входы всех ЛЭ проверяемой микросхемы DD5, размещенной в контактной панели XS1. Транзисторы VT1, VT2 усиливают ток низ­кого логического уровня до величины, достаточной для подключения четырех вхо­дов ЛЭ серий ТТЛ К155, К531 и других. Резисторы R4-R11 защищают прибор и проверяемую микросхему при неправильном ее включении, исключают влияние неисправных (короткозамкнутых на выводы питания) входов микросхемы на другие входные цепи и дополнительно ограничивают величину ее входных токов. Если те­стер используется для проверки микросхем только КМОП серий, то сопротивление резисторов R4-R11 лучше увеличить до 1 МОм для контроля входных токов поряд­ка 1 мкА, а элементы VT1, VT2, R2, R3 можно исключить.

Выходные сигналы с проверяемых ЛЭ микросхемы DD5 подаются на входы ЛЭ сравнения микросхемы DD4. Резисторы R13-R16 проверяют нагрузочную способ­ность выходов DD5 (для микросхем КМОП) и необходимы для проверки ЛЭ с вы­ходами типа «открытый коллектор» (ТТЛ). На другие входы ЛЭ сравнения поступает опорный сигнал выбранной логической функции с переключателя SB4, а к выходам ЛЭ сравнения подключены светодиоды HL1-HL4, причем токоограничивающие ре­зисторы для светодиодов не нужны, поскольку выходной ток микросхемы DD4 ог­раничен на уровне нескольких миллиампер.

Если коэффициент усиления тока базы проверяемого транзистора меньше ве­личины 0.6R18/R16 (для указанных номиналов - меньше 10), то тестер будет счи­тать его неисправным. Меняя сопротивление резистора R18, можно устанавливать критерий отбора транзисторов по коэффициенту усиления тока. Таким образом, при годном транзисторе все светодиоды будут погашены, а в остальных случаях светодиод HL4 будет мигать.

Испытатель диодов с автоматическим определением полярности подключения аналогичен описанному в . При подключении диода (или любого выпрямляюще­го перехода) к зажимам «VD» в произвольной полярности будет мигать тот из све­тодиодов HL6, HL7, который включен в том же направлении, что и диод, индицируя полярность его включения. При коротком замыкании в диоде мигают оба свето­диода, а при обрыве - не мигает ни один.

Блок питания тестера должен быть рассчитан на максимальный выходной ток не менее 150 мА при выходном напряжении не менее 7,5 В. Для проверки микро­схем КМОП возможно питание от батареи «Корунд», поскольку в этом случае ток потребления тестером от батареи не превышает 5 мА. Напряжение питания микро­схем тестера +5 В стабилизируется микросхемой DA1. На элементах VT3, R12 со­бран узел ограничения тока потребления проверяемой микросхемой по выводу пи­тания (выв. 14 DD5) на уровне 100 мА для защиты тестера при неправильном вклю­чении проверяемой микросхемы или если она «пробита» по цепи питания. Ограни­чение тока происходит за счет перехода транзистора VT3 из режима насыщения (при исправной микросхеме DD5) в нормальный режим усиления гока при фикси­рованном с помощью резистора R12 токе базы. Ток ограничения определяется ко­эффициентом усиления по току транзистора VT3 и резистором R12 и может быть изменен. Элементы DD1.4, HL5 предназначены для индикации режима токоограни- чения. Выключатель питания тестера (на схеме не показан) можно совместить с переключателями SB1, SB2, SA3 или связать с рычагом панели для автоматическо­го выключения тестера при смене микросхем.

Микросхемы DD1-DD4 заменимы аналогами из серий КР1661 или 564; DA1 - КР1157ЕН5 с любым буквенным индексом или КР142ЕН5А; транзисторы VT1, VT2- типов КТ315, КТ3102 и VT3 - типов КТ209, КТ345, КТ501, КТ626, КТ814 с любым буквенным индексом. И^ользуются другие транзисторы с малым напря­жением насыщения коллектор -эмиттер, необходимо только подобрать сопротив­ление резистора R12. Допустимые отклонения номиналов для резисторов - 20%, для конденсаторов - до 100%. Переключатели SB1, SB2, SB4, SВ5 - любые, например, П2К, a SA3 - ПД21 -3.

Панель желательно использовать с нулевым усилием (рычажный зажим). Для проверки микросхем в планарных корпусах серии 564, 1564, 133, 533 и другие) необходимо использовать специальную панель для таких корпусов. Авторский ва­риант прибора собран на макетной плате с монтажом проводом М ГТФ, при жела­нии радиолюбителю не составит труда разработать печатную плату, с учетом име­ющихся у него радиодеталей и корпуса.

Собранный без ошибок тестер прост в наладке. Следует только подобрать ре­зистор R12 узла защиты по питанию. Для этого между выводами 14 и 7 панели включить амперметр и подбором величины сопротивления R12 добиться показа­ний амперметра 100 мА с погрешностью не более 10 мА.

Порядок работы с тестером ясен из описания его схемы и приводимой табли­цы. Микросхему типа ЛП8 серий ТТЛ/ТТЛШ (четыре стробируемых повторителя) следует проверять по логике ИЛИ. Для проверки микросхем К155ЛА18, К155ЛЛ2 в корпусах с восемью выводами (DIP-8) надо замкнуть перемычкой выводы 11 и 14 панели, переключатели SB1, SB2 установить в положение «ЛАЗ», а проверя­емые микросхемы вставить в нижнюю по схеме часть панели (ключ DD5 показан на рисунке пунктиром). При этом индикация исправности осуществляется свето­диодами HL3, HL4, а светодиоды HL1, HL2 мигают.

Нетрудно приспособить данный логический тестер для проверки микросхемы К561КТЗ (и ее аналогов). Для этого нижние по схеме выводы резисторов R13-R16 надо соединить с общим проводом, секции SB1.1, SB2.1 переключателей SB 1 , SB2 установить в положение «ЛЕ1», а секции SB1.2, SB2.2 - в положение «ЛАЗ» и вы­брать опорную логическую функцию 2И.

ЛИТЕРАТУРА

1. Шило В. Л. Популярные цифровые микросхемы. Справочник. - М.: Радио и связь, 1987.

2. Шило В. Л. Популярные микросхемы КМОП. Справочник.- М.: Ягуар, 1993.

3. Пухальский Г. И., Новосельцева Т. Я. Проектирование дискретных устройств на интеграль­ных микросхемах. Справочник.- М.: Радио и связь, 1990.

4. Петровский И. И. и др. Логические ИС КР1533, КР1554. Справочник. В 2-х частях.- М.: Бином, 1993.

5. КарабутовА. Испытатель полупроводниковых приборов.- Радио, 1995, № 6, с. 28.

Журнал «Радио», 1996,№ 8, с.33

Классификация интегральных микросхем. В зависимости от тех­нологии изготовления ИМС делятся на полупроводниковые и пленоч­ные. Сочетание технологий позволяет реализовать еще одну группу - гибридные.

Полупроводниковые ИМС характеризуются повышенным количе­ством элементов и защищены от влияния внешней среды. Пленочные ИМС - схемы с пассивными элементами. В гибридных ИМС пленоч­ными являются пассивные элементы и соединения, а активные эле­менты - бескорпусные диоды и транзисторы, выполненные на отдель­ных полупроводниковых кристаллах.

Сложность ИМС определяется количеством содержащихся в ней элементов и компонентов - степенью интеграции.

По степени интеграции различают следующие ИМС:

· маломасштабные (МИС) - 20-40 элементов:

· среднемасштабные (СИС) - 50-150 элементов;

· большие (БИС) - 150-900 элементов;

· сверхбольшие (СБИС) - более 1000 элементов.

Благодаря развитию технологии униполярных МОП- или МДП-транзисторов существенно повышена степень интеграции микросхем.

Относительная простота технологии изготовления, малая потреб­ляемая мощность, невысокая стоимость, а также ряд ценных схемо­технических средств позволяют на основе ИМС создавать устройства различной сложности и степени ответственности - от микропроцессо­ров до сложнейших приборов, работающих в космосе.

ИМС различаются по двум признакам: по конструкции корпуса и рас­положению выводов (с планарными выводами - DIP PDIP; со штырько­выми выводами - SOIC) и по функциональному назначению (аналого­вые, или линейные - АИМС; цифровые - ЦИМС).

АИМС предназначены для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции, и используются в усилителях сигналов низких и высоких частот, в генераторах, смеси­телях, детекторах, т.е. в устройствах, где активные элементы работают в линейном режиме.

ЦИМС предназначены для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. Активные элементы ЦИМС работают в ключевом режиме. ЦИМС используются в ЭВМ, в устройствах дискретной обработки информации, системах автома­тики. Одним из видов ЦИМС являются логические элементы, которые предназначены для выполнения логических операций над переменны­ми и способны принимать только два уровня напряжения - логиче­ский «0» и логическую «1». Логическому «0» соответствует низкий уровень напряжения, а логической «1» - высокий.

Несколько простейших логических функций можно реализовать с помощью основных логических элементов:

· логическое сложение (дизъюнкция, или операция ИЛИ) заключается в том, что функция принимает значение, равное «1», если хотя бы на одном входе присутствует «1»:


· логическое умножение (конъюнкция, или операция И) заключается в том, что функция принимает значение, равное «1», если на всех входах одновременно присутствует «1»;

· логическое отрицание (инверсия, или операция НЕ) заключается в получении переменной, противоположной данной.

На рисунке 6.4 приведены условное графическое обозначение (УГО) элементов И, ИЛИ, НЕ и таблицы истинности. В таблице истинности «1» означает наличие сигнала на входах и выходе, а «0» - его отсутствие.

Рис. 6.4. УГО и таблицы истинности для логических элементов И (а), ИЛИ (б) и НЕ (в )

Помимо функциональных элементов одноступенчатой логики су­ществуют элементы двухступенчатой и трехступенчатой логики.

Измерение параметров и проверка кондиционности АИМС. Из множества АИМС широко применяются дифференциальные и опера­ционные усилители (ОУ), а также видеоусилители и другие широко­полосные усилители. ОУ представляют собой усилитель постоянного тока (УПТ) с двумя входами (прямым и инвертируемым) и одним вы­ходом. Вводя в такой усилитель разнообразные обратные связи, мож­но получить электронное устройство, реализующее различные функ­ции преобразования сигнала. Типичной является подача на оба входа ОУ парафазного (дифференциального) сигнала. Эти два воздействия могут быть различными, вплоть до того, что один из входов (инверти­рующий или неинвертирующий) может быть заземлен.

ОУ являются многокаскадными усилителями, в которых первый каскад - дифференциальный; выходной каскад строится так, чтобы обеспечить достаточно большой динамический диапазон; промежу­точные каскады обеспечивают дополнительное усиление и сдвиг уров­ня. Сдвиг уровня необходим для того, чтобы при отсутствии сигналов на входах напряжение на выходе равнялось нулю.

Отклонение значения U вых от нуля при отсутствии сигналов на вхо­дах должно быть минимальным (доли милливольта).

Другими важными характеристиками ОУ являются следующие:

· большое входное сопротивление (в десятки - сотни килоом), обе­спечиваемое входным дифференциальным каскадом;

· малое выходное сопротивление (сотни ом);

· большой коэффициент усиления по напряжению (десятки - сотни тысяч);

· малая потребляемая мощность (десятки милливатт);

· большая полоса пропускания ОУ (десятки тысяч килогерц и бо­лее);

· слабое влияние температуры.

ОУ имеют большое количество параметров, измеряемых специаль­ными испытателями (группа Л2), с помощью которых измеряются ка­чественные параметры линейных ИМС: U см - напряжение смешения, I вх1,2 - входные токи, k U - коэффициент усиления по напряжению, U вых - напряжение на выходе, I потр - потребляемый ток.

Измеренные параметры сравнивают со справочными и делают вывод о годности и кондиционности АИМС. Годной и кондиционной считается микросхема, измеренные параметры которой полностью со­ответствуют справочным; годной и некондиционной (ограниченно годной) - микросхема, измеренные параметры которой не соответствуют справочным; негодной - микросхема, параметры которой k и или U вых равны нулю.

Измерение параметров и проверка работоспособности ЦИМС.

Испытания ЦИМС проводятся одним из трех основных методов: ста­тическим, динамическим, тестовым (функциональным).

Статические испытания выполняются на постоянном токе путем измерения статических параметров ЦИМС.

Динамические (импульсные) испытания выполняются в импульс­ных режимах путем измерения динамических параметров.

Тестовые (функциональные, или стендовые) испытания обеспечива­ют моделирование рабочих режимов, которое позволяет имитировать реальные рабочие режимы. Работоспособность ЦИМС определяется в рабочих условиях. Тестовые испытания реализуются с помощью промышленных испытателей (группа Л2), характерными особенно­стями таких испытателей являются проверка логических элементов одно-, двух- и трехступенчатой логики; необходимость составления для каждой конкретной логической ЦИМС индивидуальной прог­раммы испытаний - таблицы истинности, основываясь на законах алгебры логики.

Такой испытатель не позволяет проверять триггеры, регистры, счетчики, дешифраторы и микропроцессоры.

Для проведения тестовых испытаний необходимо выполнить подготовительную работу, выписав из справочной литературы следующую информацию:

· тип корпуса ИМС с указанием номера 1-го вывода для правильного последующего подключения микросхемы к адаптеру;

· номера выводов, на которые необходимо подать напряжение пита­ния микросхемы;

· значение напряжения питания;

· номер вывода заземления;

· значения напряжений, соответствующих уровням логической «1» и логического «0» (U 1 и U 0 );

· номера выводов, соответствующих входам и выходам ИМС;

· структурную схему ЦИМС.

На основании справочных сведений по двум последним пунктам составляют программу испытаний (таблицу истинности с дополни­тельной графой для записи результатов измерения напряжения).

К каждому выходу ЦИМС последовательно подключают электрон­ный вольтметр, которым измеряется выходное напряжение логического элемента при разных комбинациях сигналов на входе микросхемы (в соответствии с составленной программой испытаний).

Сравнение ожидаемого значения напряжения с измеренным значе­нием позволяет сделать вывод о работоспособности ЦИМС.

Испытатели ЦИМС, работа которых основана на тестовой про­верке, позволяют проверить общую работоспособность микросхемы и требуют продолжительного времени при подготовке и собственно испытаний.

Понадобилось собрать входные стабилизирующие цепи по питанию для устройства на основе микроконтроллера PIC16F628 стабильно работающего при напряжении от 5 вольт. Это не сложно. Взял интегральную микросхему PJ7805 и на её основе в соответствии со схемой из даташита сделал. Подал напряжение и на выходе получил 4,9 вольта. Всего скорей, что этого вполне достаточно, но упрямство, замешанное на педантичности, взяло верх.

Достал коробушку с интегральными стабилизаторами и вознамерился перемерить все соответствующего достоинства. А чтобы вдруг не ошибиться даже соответствующую схемку выложил перед собой. Однако энтузиазм закончился уже на первом же компоненте. Этот «ёжик без ручек, без ножек» из соединительных проводов с крокодилами желал жить своей жизнью и воли радиолюбителя подчинялся с большим трудом. Да к тому же проверяемый стабилизатор на выходе показал 4,86 вольта, чем поверг мой оптимизм в уныние.

Нет тут нужно что-то более существенное, например какой-то пусть и простой но, тем не менее, пробник что ли. Забил в поисковик яндекса и получил то, что видите на фото «Комплекс контроля интегральных стабилизаторов напряжения». Ну, это не для средних радиолюбительских умов. Стало ясно, что велосипед придётся изобретать.

Составленная схема явно уступает верхней картинке, ну тут уж ничего не поделаешь, что можем. Конденсатор С1 устраняет генерацию при скачкообразном включении входного напряжения, С2 служит для защиты от переходных помеховых импульсов. Их ёмкость решил взять 100 мкФ. Вольтаж в соответствии с напряжением проверяемого стабилизатора. Ставить конденсаторы как можно ближе к корпусу интегрального стабилизатора. Диод VD1 1N4148 не позволит конденсатору на выходе стабилизатора разрядится через него после выключения (это чревато выходом стабилизатора из строя). U Вх. интегрального стабилизатора должно быть выше U Вых. минимум на 2,5 вольта. Нагрузку подбирать так же в соответствии с возможностями тестируемого стабилизатора.

На роль корпуса был выбран самодельный вариант оборудованный контактными штырями для соединения с мультиметром (минус в гнездо «сom», плюс в «V»). В качестве соединительного элемента выводов проверяемого компонента со схемой можно приспособить вот такой тройной штыревой контакт. В мою задачу входит проверка трёхвыводных интегральных стабилизаторов рассчитанных на напряжение не более 12 вольт поэтому в схему поставлю два конденсатора 100 мкф х 16 В. Диод согласно схемы.

В просверленные точно в соответствии с диаметром штыревых контактов отверстия их и вставляем, с внутренней стороны надеваем на каждый штырь по соответствующей (махонькой) металлической шайбочке, смочив активным флюсом и плотно прижав припаиваем каждую шайбу к соответствующему штырю не допуская соединения пар штырь - шайба между собой. Для этого шайбы нужно подточить, центральную с обеих сторон, крайние с одной. Отверстия по месту установки нужно
именно просверлить, если проколоть шилом образуется внутренняя неровность краёв отверстия и ровно + плотно установить шайбу не выйдет. Штыри, для прочности, также обязательно должны находится на общем твёрдом основании из диэлектрика.

Контактные площадки образованные местом пайки штырей и шайб становятся местом установки компонентов схемы. Получается компактно, также выполняется рекомендация минимального расстояния конденсаторов от выводов проверяемого интегрального стабилизатора. С соединительными проводами всё просто, главное взять их соответствующего цвета (для «+» красный, для «-» чёрный) и никакой путаницы не будет.

Подумав, установил кнопку включения нажимного действия, поставлена в разрыв плюсового (красного) провода на входе питания. Всё таки это удобство из разряда необходимых. Тройной штыревой контакт понадобилось «доработать» - немного согнуть, тут так, либо один раз подогнать контакты под выводы компонентов, либо перед каждым соединением ножки стабилизаторов гнуть под контакты.

Пробник - приставка к мультиметру готов. Вставляю в соответствующие гнёзда мультиметра штыри пробника, предел измерения выставляю 20 вольт постоянного напряжения, провода подвода электрического тока подсоединяю к лабораторному блоку питания в соответствии с их расплюсовкой, устанавливаю для проверки стабилизатор (попался на 10 вольт), выставляю соответственно на БП напряжение 15 вольт и нажимаю кнопку включения на пробнике. Устройство сработало, на дисплее 9,91 В. Далее в течении минуты разобрался со всеми трёхвыводными стабилизаторами на напряжение до 12 вольт включительно. Несколько, из числа бережно хранимых, оказались негодными.

Итого

Давно понятно, что вот такие простенькие пробники - приставки в радиолюбительском деле так же необходимы, как и весьма серьёзные измерительные приборы, но вот делать их (возиться с их изготовлением) попросту лень, а напрасно, и понимание этого приходит каждый раз когда это простенькое устройство всё же было собрано и оказало неоценимую помощь в творческих начинаниях. Автор - Babay iz Barnaula .

Обсудить статью КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР

В ремонте техники и сборке схем всегда нужно быть уверенным в исправности всех элементов, а иначе вы зря потратите время. Микроконтроллеры тоже могут сгореть, но как его проверить, если нет внешних признаков: трещин на корпусе, обугленных участков, запаха гари и прочего? Для этого нужно:

    Источник питания со стабилизированным напряжением;

    Мультиметр;

    Осциллограф.

Внимание:

Полная проверка всех узлов микроконтроллера трудна - лучший способ заменить заведомо исправным, или на имеющийся прошить другой программный код и проверить его выполнение. При этом программа должна включать как проверку всех пинов (например, включение и отключение светодиодов через заданный промежуток времени), а также цепи прерываний и прочего.

Теория

Это сложное устройство в нём многофункциональных узлов:

    цепи питания;

    регистры;

    входы-выходы;

    интерфейсы и прочее.

Поэтому при диагностике микроконтроллера возникают проблемы:

Работа очевидных узлов не гарантирует работу остальных составных частей.

Прежде чем приступать к диагностике любой интегральной микросхемы нужно ознакомиться с технической документацией, чтобы её найти напишите в поисковике фразу типа: «название элемента datasheet», как вариант - «atmega328 datasheet».

На первых же листах вы увидите базовые сведения об элементе, для примера рассмотрим отдельные моменты из даташита на распространенную 328-ю атмегу, допустим, она у нас в dip28 корпусе, Нужно найти цоколевки микроконтроллеров в разных корпусах, рассмотрим интересующий нас dip28.

Первое на что мы обратим внимание - это то, что выводы 7 и 8 отвечают за плюс питания и общий провод. Теперь нам нужно узнать характеристики цепей питания и потребление микроконтроллера. Напряжение питания от 1.8 до 5.5 В, ток потребляемый в активном режиме - 0.2 мА, в режиме пониженного энергопотребления - 0.75 мкА, при этом включены 32 кГц часы реального времени. Температурный диапазон от -40 до 105 градусов цельсия.

Этих сведений нам достаточно, чтобы провести базовую диагностику.

Основные причины

Микроконтроллеры выходят из строя, как по неконтролируемым обстоятельствам, так и из-за неверного обращения:

1. Перегрев при работе.

2. Перегрев при пайке.

3. Перегрузка выводов.

4. Переполюсовка питания.

5. Статическое электричество.

6. Всплески в цепях питания.

7. Механические повреждения.

8. Воздействие влаги.

Рассмотрим подробно каждую из них:

1. Перегрев может возникнуть, если вы эксплуатируете устройство в горячем месте, или если вы свою конструкцию поместили в слишком маленький корпус. Температуру микроконтроллера может повысить и слишком плотный монтаж, неверная разводка печатной платы, когда рядом с ним находятся греющиеся элементы - резисторы, транзисторы силовых цепей, линейные стабилизаторы питания. Максимально допустимые температуры распространенных микроконтроллеров лежат в пределах 80-150 градусов цельсия.

2. Если паять слишком мощным паяльником или долго держать жало на ножках вы можете перегреть мк. Тепло через выводы дойдёт до кристалла и разрушит его или соединение его с пинами.

3. Перегрузка выводов возникает из-за неверных схемотехнических решений и коротких замыканий на землю.

4. Переполюсовка, т.е. подача на Vcc минуса питания, а на GND - плюса может быть следствием неправильной установки ИМС на печатную плату, или неверного подключения к программатору.

5. Статическое электричество может повредить чип, как при монтаже, если вы не используете антистатическую атрибутику и заземление, так и в процессе работы.

6. Если произошел сбой, пробило стабилизатор или еще по какой-то причине на микроконтроллер было подано напряжение выше допустимого - он вряд ли останется цел. Это зависит от продолжительности воздействия аварийной ситуации.

7. Также не стоит слишком усердствовать при монтаже детали или разборке устройства, чтобы не повредить ножки и корпус элемента.

8. Влага становится причиной окислов, приводит к потере контактов, короткого замыкания. Причем речь идет не только о прямом попадании жидкости на плату, но и о длительной работе в условиях с повышенной влажностью (возле водоёмов и в подвалах).

Проверяем микроконтроллер без инструментов

Начните с внешнего осмотра: корпус должен быть целым, пайка выводов должна быть безупречной, без микротрещин и окислов. Это можно сделать даже с помощью обычного увеличительного стекла.

Если устройство вообще не работает - проверьте температуру микроконтроллера, если он сильно нагружен, он может греться, но не обжигать, т.е. температура корпуса должна быть такой, чтобы палец терпел при долгом удерживании. Больше без инструмента вы ничего не сделаете.

Проверьте, приходит ли напряжение на выводы Vcc и Gnd. Если напряжение в норме нужно замерить ток, для этого удобно разрезать дорожку, ведущую к выводу питания Vcc, тогда вы сможете локализоровать измерения до конкретной микросхемы, без влияния параллельно подключенных элементов.

Не забудьте зачистить покрытие платы до медного слоя в том месте, где будете прикасаться щупом. Если разрезать аккуратно, восстановить дорожку можно каплей припоя, или кусочком меди, например из обмотки трансформатора.

Как вариант можно запитать микроконтроллер от внешнего источника питания 5В (или другого подходящего напряжения), и замерить потребление, но дорожку резать все равно нужно, чтобы исключить влияние других элементов.

Для проведения всех измерений нам достаточно сведений из даташита. Не будет лишним посмотреть, на какое напряжение рассчитан стабилизатор питания для микроконтроллера. Дело в том, что разные микроконтроллерные схемы питаются от разных напряжений, это может быть и 3.3В, и 5В и другие. Напряжение может присутствовать, но не соответствовать номиналу.

Если напряжения нет - проверьте, нет ли КЗ в цепи питания, и на остальных ножках. Чтобы быстро это сделать отключите питание платы, включите мультиметр в режим прозвонки, поставьте один щуп на общий провод платы (массу).

Обычно она проходит по периметру платы, а на местах крепления с корпусом имеются залуженные площадки или на корпусах разъёмов. А вторым проведите по всем выводам микросхемы. Если он где-то запищит - проверьте что это за пин, прозвонка должна сработать на выводе GND (8-й вывод на atmega328).

Если не сработала - возможно, оборвана цепь между микроконтроллером и общим проводом. Если сработала на других ножках - смотрите по схеме, нет ли низкоомных сопротивлений между пином и минусом. Если нет - нужно выпаять микроконтроллер и прозвонить повторно. То же самое проверяем, но теперь между плюсом питания (с 7-м выводом) и выводами микроконтроллера. При желании прозваниваются все ножки между собой и проверяется схема подключения.

Глаза электронщика. С его помощью вы можете проверить наличие генерации на резонаторе. Он подключается между выводами XTAL1,2 (ножки 9 и 10).

Но щуп осциллографа имеет ёмкость, обычно 100 пФ, если установить делитель на 10 ёмкость щупа снизится до 20 пФ. Это вносит изменения в сигнал. Но для проверки работоспособности это не столь существенно, нам нужно увидеть есть ли колебания вообще. Сигнал должен иметь форму наподобие этой, и частоту соответствующую конкретному экземпляру.

Если в схеме используется внешняя память, то проверить можно очень легко. На линии обмена данными должны быть пачки прямоугольных импульсов.

Это значит, что микроконтроллер исправно выполняет код и обменивается информацией с памятью.

Если выпаятьмикроконтроллер и подключить его к программатору можно проверить его реакцию. Для этого в программе на ПК нажмите кнопку Read, после чего вы увидите ID программатора, на AVR можно попробовать читать фьюзы. Если нет защиты от чтения, вы можете считать дамп прошивки, загрузить другую программу, проверить работу на известном вам коде.Это эффективный и простой способ диагностики неисправностей микроконтроллера.

Программатор может быть как специализированным, типа USBASP для семейства АВР:

Так и универсальный, типа Miniprog.

Заключение

Как таковая проверка микроконтроллера не отличается от проверки любой другой микросхемы, разве что у вас появляется возможность использовать программатор и считать информацию микроконтроллера. Так вы убедитесь в его возможности взаимосвязи с ПК. Тем не менее, случаются неисправности, которые нельзя детектировать таким образом.

Вообще управляющее устройство редко выходит из строя, чаще проблема заключается в обвязке, поэтому не стоит сразу же лезть к микроконтроллеру со всем инструментарием, проверьте всю схему, чтобы не получить проблем с последующей прошивкой.

Вам также будет интересно:

Светодиодный стробоскоп (светодиодный маяк) на TL494 Стробоскоп автомобильный на светодиодах
Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса...
Импульсный блок питания усилителя на IR2151, IR2153 Повышающий преобразователь напряжения на ir2153
Доброго дня всем! Вот смотрю схемы в Интернете блоков питания импульсных и... И не понимаю!...
Стробоскоп для выставления зажигания своими руками Стробоскоп автомобильный для зажигания своими руками
Со стробоскопом выставлять зажигание на карбюраторном моторе всегда намного удобнее, чем...
Кто придумал Паровой двигатель - Когда Изобрели?
Определение Паровая машина - двигатель внешнего сгорания, который преобразовывает энергию...
Многие ведущие зарубежные автопроизводители ежегодно выпускают усовершенствованные...