Автомобильный - Mirtaxibel

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Основные неисправности кондиционера и пути их устранения

Расчет установки утилизации теплоты отходящих газов технологической печи Экономия топлива при использовании теплоты отходящих газов

Как определить неисправность стойки стабилизатора — отвечают эксперты Признаки умирания амортизаторов

Чиним и меняем замок зажигания «железного коня»: курс начинающего автолюбителя

Распиновка проводов камеры заднего вида авто

Самостоятельная замена цепи грм на ниве шевроле Крышка газораспределительного механизма шеви нива крепление

Выбираем какое масло заливать в двигатель на Шевроле Круз: объёмы

Белый, сизый, черный дым из выхлопной

Какое масло лить в двигатель CFNA

Применение усилителя в датчике металлоискателя

Архив метки: своими руками овердрайв

Как заправить зажигалку бензином

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Точные эфемериды gps и глонасс. Для чего нужны наземные станции GPS

Что такое эфемериды?

В знаменитом словаре определений Вебстера, приводится следующее определение термина эфемериды" "Эфемериды – это таблица координат небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности земли.

В общем, для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS, нам нужно знать их местонахождение в пространстве, другими словами их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные (бортовые) эфемериды

Переданные (бортовые) эфемериды, как видно из их названия, передаются непосредственно от GPS спутников. Переданные эфемериды содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84. Эти кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Пять станций мониторинга постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее главная управляющая станция Navstar ежедневно передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет ~ 260 см и ~ 7 нс.

Точные эфемериды (Final products)

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с интервалом 15 мин. Точные эфемериды – это продукт постобработки. Данные собираются станциями слежения, расположенными по всей территории Земли. Далее эти данные передаются в Международную Службу GPS (IGS), где и происходит вычисление точных эфемерид. Точные эфемериды становятся доступными приблизительно через 2 недели после времени сбора данных и имеют точность менее 5 см и 0.1 нс.

Точные эфемериды можно скачать с сервера NASA:
ftp://igscb.jpl.nasa.gov/igscb/product/

Быстрые эфемериды (Rapid products)

Быстрые эфемериды вычисляются по тому же принципу, что и точные эфемериды, однако при обработке используется меньший набор данных. Быстрые орбиты, как правило, “выкладываются” на службы международных агентств на следующий день. Точность быстрых эфемерид составляет 5 см и 0.2 нс.

Быстрые эфемериды можно скачать с сервера IGS:
http://igscb.jpl.nasa.gov/components/dcnav/igscb_product_wwww.html

Предсказанные или Ультрабыстрые эфемериды (Ultrarapid products)

Ультрабыстрые эфемериды передаются, как и переданные эфемериды, но обновляются они дважды в день. Иногда их называют эфемеридами в реальном времени. Это можно объяснить тем фактом, что их используют также как и переданные эфемериды, но для приложений в реальном времени. Точность ультрабыстрых эфемерид составляет ~ 25 см и ~ 5 нс.

Ультрабыстрые эфемериды можно скачать с сервера IGS:
http://igscb.jpl.nasa.gov/components/dcnav/igscb_product_wwww.html

А нужны ли нам точные эфемериды?

Для того, чтобы ответить на этот вопрос, давайте установим связь между точностью эфемерид и точностью решения GPS вектора. Предположим, речь идет о базовой линии длиной 10 км. Мы обрабатываем линию, используя при этом, переданные эфемериды (точность 2.60 м). В этом случае, ожидаемая точность будет равна (10 км /20000 км) * 2.60м = 1.3 мм. Если длина базовой линии будет равна 100 км, ошибка возрастет до 13 мм. Эти цифры позволяют сделать вывод о том, что на коротких базовых линиях (до 100 км) использование переданных эфемерид является более чем достаточным.

Вообще, можно говорить о том, что в связи с развитием системы GPS, потребность в точных эфемеридах несколько уменьшилась. Например, еще несколько лет назад ошибка переданных эфемерид составляла 20 м, при этом ошибка измерения на 10 км базисе составила бы 1 см.

Зачем использовать точные эфемериды?

Во-первых, необходимо иметь в виду, что величины ошибок, которые приводились ранее, справедливы для линий, имеющих фиксированные решения. Однако на линиях порядка 50 км и выше, весьма трудно получить фиксированное решение, используя переданные эфемериды. Использование точных эфемерид значительно повышает шансы получить фиксированное решение.

Во-вторых, давно известно, что высота с помощью GPS определяется менее точно, чем плановые координаты. Поэтому, при работах, требующих более качественного определения высоты, рекомендуется использовать точные эфемериды.

В-третьих, надо помнить о том, что переданные эфемериды только предположение о том, где должны находиться спутники. Иногда могут возникнуть ситуации, когда в переданных эфемеридах содержатся ошибки, которые не могут не отразиться на качестве решения базовой линии. Выходом из такой ситуации, может служить использование быстрых эфемерид, спустя сутки после выполнения наблюдений.

Где я могу найти точные эфемериды?

Существует много источников, где можно бесплатно найти различные типы эфемерид. В качестве примеров, можно привести сайт Международной Геодинамической Службы (IGS):
http://igscb.jpl.nasa.gov/components/prods.html

Какой наиболее распространённый формат точных эфемерид?

Точные эфемериды доступны в двух стандартных форматах: SP3 (ASCII формат) и E18 (бинарный формат). Большинство профессиональных программ обработки GPS измерений напрямую поддерживают один из этих двух форматов (например, поддерживает оба типа точных эфемерид, прим. переводчика). При необходимости можно воспользоваться утилитой по переводу между этими двумя форматами.

Что такое астрологические таблицы эфемериды? Для чего они необходимы? В астрономии эфемеридой называют таблицу небесного местонахождения Луны, Солнца, планет и иных космических объектов, вычисленных через одинаковые отрезки времени. К примеру, на двенадцать часов ночи каждых суток.

Звёздными эфемеридами называют таблицы, в которых указано видимое положение звёзд, подвластное влиянию нутации, процессии и аберрации. Также эфемеридой называют формулу, с помощью которой рассчитывают момент прихода мгновения следующего момента минимума для затемнённых переменных систем звёзд.

Применение

Как используются таблицы эфемерид? С помощью них определяют координаты наблюдателя. Этим термином также именуют данные положения синтетических спутников Земли, применяемые для навигации, к примеру, в системе NAVSTAR (GPS), Galileo, «Глонасс».

Сведения о месторасположении спутников преподносятся в составе особых сообщений. При данных обстоятельствах говорят о передаче эфемерид.

Исторические издания

Известно, что в 1474 году Региомонтан издал свои знаменитые таблицы эфемерид в Нюрнберге. В этом труде находились эфемериды на 1475-1506 год, которые были рассчитаны на каждый день. Эта книга содержала таблицы положений планет, условия соединения светил и затмений.

Современные издания

Сегодня таблицы эфемерид публикуются в важнейших астрологических сборниках: «Астрономический ежегодник» (издаётся РАН с 1921 года), Nautical Almanac, American Ephemeris, Berliner Astronomisches, Connaissance des Temps. Кроме того, существуют сайты, с помощью которых можно рассчитать эфемериды. Их создают как энтузиасты, так и профессионалы.

Так, известно, что на сайте «НАСА» Эспеньяк Фред опубликовал данные положения планет солнечной системы, Луны и Солнца на 1995-2006 год. А на сайте «Института расчёта эфемерид и небесной механики» имеется калькулятор координат космических объектов. Кроме того, существует библиотека, с помощью которой можно на листе Excel провести астрономические подсчёты, используя эфемериды Швейцарии, JPL и Мошьера.

Расчёт

Таблицы эфемерид находятся на вооружении у каждого астролога. Сегодня движение объектов вокруг Солнца изучено очень хорошо. Разными астрологическими объединениями созданы математические формы для вычисления эфемерид, соперничающие между собой по точности. Эти образцы описаны в особых астрономических изданиях.

Старая теория

Версия ILE является улучшенной теорией Брауна. Она впервые предложена Э. У. Брауном в 1919 году в его работе «Таблицы перемещения Луны», которая была усовершенствована У. Дж. Экертом в 1954 году в работе «Улучшенная лунная эфемерида». В дальнейшем в теорию ещё несколько раз вносились изменения.

Эта модель ранее использовалась Ф. Эспеньяком для вычисления затмений, предоставленных сайтом «НАСА».

Новое решение

Версия VSOP82 описывает перемещение планет вокруг Солнца. Она предложена в 1982 году П. Бретаньоном и напечатана в астрологическом альманахе «Астрофизика и астрономия» под названием «Теория перемещения всех планет - решение VSOP82».

Ещё одна версия

Версия ELP 2000 описывает лишь эфемериды Луны. Она напечатана в астрологическом сборнике «Астрофизика и астрономия» в 1983 году М. Шапрон-Тузэ и Ж. Шапрон, а также в статье «Эфемериды Луны ELP 2000». Данная теория содержит 7 684 периодических члена для эклиптической широты Луны, 20 560 - для эклиптической долготы и 9 618 - для расстояния. Амплитуда младших членов соответствует 2 см для дистанций и 0,00001 секунды дуги. В упрощённом виде модель применяется Ф. Эспеньяком для вычисления затмений, обнародованных на сайте «НАСА».

Публикации СССР

А что можно сказать об отечественной астрологии? На основе версии DE200/LE200 публиковал эфемериды Луны, Солнца и планет «Астрологический ежегодник СССР» (начиная с 1986 года).

Модель лаборатории JPL

Версия DE403/LE403 описывает перемещение планет вокруг Солнца и делает акцент на координатах Луны. Её разработали сотрудники лаборатории JPL Стэндиш, Уильямс, Ньюхолл и Фолкнер. Она опубликована в статье «Лунные и планетарные эфемериды JPL DE403/LE403» (1995 г.) в специальном издании указанной лаборатории. Сегодня существуют новые таблицы эфемериды, разработанные JPL.

Удобные таблицы

Положение планет обсчитано звездочётами на много лет вперёд, а результаты вычислений переведены в таблицы. В них находятся данные видимых позиций планет, которые вычисляют с помощью компьютера, руководствуясь законами механики космоса. Положения небесных объектов в таблицах указаны с конкретным шагом, обозначающим отрезок времени между двумя связанными мгновениями, на которые выполняется вычисление. Удобно применять следующие таблицы с шагом в одни сутки:

  • Американская таблица эфемерид Михельсона для XXI века с 2001 по 2050 год и для ХХ века с 1900 по 2000 год.
  • Розенкрейцеровские эфемериды (1900-2000 год).
  • таблицы Рафаэля (позиции планет на каждый год).

Известно, что в эфемеридах Михельсона положение небесных объектов дано на гринвичскую полночь каждых суток, а данные представлены помесячно. На каждой странице размещены величины долготы планет на два месяца в виде пары блоков (Longitude).

Процессы, происходящие в современной технике, для пользователя загадка. Более того, зачастую пользователя они ничуть не волнуют: или не интересно, или просто все равно. Это касается и навигаторов. Включил – и знаешь свои координаты. Несколько движений пальцами – маршрут готов. Однако порою, чтоб разобраться с техническими характеристиками того же навигатора, нужно знать больше, чем необходимо просто для пользования им.

Поэтому, оговорюсь сразу: статья будет интересна тем, кого не устраивает роль рядового пользователя «черной коробочки с экраном». Тем, кто стремится изучить все пункты технической характеристики устройства перед его приобретением. Тем, кто получает удовольствие от понимания процессов, происходящих в разнообразных устройствах.

Такие люди не отвечают «не знаю» на вопросы типа: «Какой на твоем компьютере установлен процессор?». Вопрос-то, по сути, элементарный, но вы будете удивлены тем, какой процент друзей-товарищей ответ на него знает. Попробуйте!

Немного о терминах

В каждой сфере науки и техники полным-полно терминов. Термины эти звучат для непосвященных загадочно, но становятся, в целом, понятными при более пристальном рассмотрении.

В теории космической навигации также есть множество терминов. И неудивительно: эта сфера знаний связана и с движением спутников в околоземном пространстве, и с приемом-обработкой-передачей сигналов, и с их кодированием.

Терминами, которые небесполезно будет рассмотреть, являются понятия альманах и эфемериды. Почему именно эти понятия нам интересны? Да потому, что на знании этих понятий основывается понимание «холодного» и «горячего» старта навигатора.

Альманах в современной навигации и не только

Еще до начала эры космической навигации понятие альманах уже существовало. Альманахом называли справочник, который содержит основные астрономические данные – положения небесных тел и их привязку к календарю. Одним из самых старых альманахов является китайская книга Тун Син.

В наши дни назначение альманахов не изменилось. Изменилось только количество данных, которые в них содержатся, и их точность. Альманах в космической навигации – совокупность данных об основных параметрах орбит спутников в навигационной системе. Форма представления этих данных для нас, собственно, не так и важна.

Альманах содержит шесть параметров орбиты спутника на определенный момент времени. Причем каждый спутник системы имеет данные о других спутниках. Навигатор, установив связь всего с одним спутником, после получения альманаха имеет данные о параметрах орбит и других. Альманах, загруженный в память спутника, действителен 30 дней. Тем не менее уточняются эти данные чаще – раз в несколько суток, во время сеанса связи с одной из наземных станций.

Эфемериды

Кроме основных параметров орбит, навигатор получает от каждого из спутников их эфемериды, это данные, по которым вычисляются отклонения орбиты, коэффициенты возмущений и т.д. То есть с их помощью навигатор с высокой точностью может определить местоположение спутников.

Эфемериды, несущие более точные данные, устаревают гораздо скорее. Их данные активны только около 30 минут. Они также обновляются наземными станциями.

Без данных о местоположении навигационных спутников невозможно определение координат приемника. Необходимо для этого целых четыре спутника. Об особенностях включения навигатора и о «холодном», «теплом» и «горячем» старте, поговорим в следующей статье.

Что такое «холодный» и «горячий» старт навигатора?

Общий алгоритм работы навигатора

Именно общий – все до мелочей знают только разработчики. Итак, после включения навигатор начинает совершать попытки установить связь с одним из навигационных спутников.

Первый же спутник, с которым связь была установлена, передает навигатору альманах, в котором содержится информация про основные параметры орбит каждого спутника орбитальной группировки этой конкретной навигационной системы.

Одного спутника для определения координат мало. Для этого, например, в навигационной системе GPS их необходимо как минимум четыре. Каждый из этих четырех передает навигатору свои эфемериды – набор уточненных данных про свою орбиту.

В целом, ничего сложного, но вот так незаметно мы и подобрались к тому этапу, на котором будет раскрыта разница между двумя этими видами старта навигатора.

«Холодный» старт

Включив навигатор в первый раз или после длительного перерыва в его использовании, получения собственных координат придется ждать. Сколько? Зависит от многих факторов:
- от качества приемного блока навигатора;
- от количества спутников в зоне радиовидимости;
- от состояния атмосферы;
- от уровня электромагнитного шума на основных частотах.

При так называемом «холодном» старте навигатора, в его памяти вообще отсутствуют как альманах, так и эфемериды. А может, и присутствуют, но они безнадежно устарели.

В таком случае навигатор должен пройти полный цикл получения этих данных.

Алгоритм его действий примерно таков:
- установить связь с первым из найденных спутников;
- получить альманах, сохранить;
- получить эфемериды от найденного спутника, сохранить;
- установить связь еще с тремя спутниками, получить от них эфемериды, сохранить;

Немало действий, правда? На все это необходимо время. Потому старт и называют «холодным» – навигатору нужно время на «разогрев», подготовку к работе.

«Горячий» старт

Кардинально отличается от «холодного» тем, что на момент включения в памяти навигатора уже находится актуальный альманах и актуальные эфемериды. Вспоминаем, что данные альманаха действительны 30 суток, а эфемерид – 30 минут.

Значит, старт может быть «горячим» только в том случае, когда питание отключается только на весьма непродолжительное время.

Алгоритм работы навигатора значительно упростится:
- установить связь со спутниками;
- если необходимо – обновить эфемериды, сохранить;
- на основе эфемерид, зная местоположение спутников, вычислить собственные координаты.

«Теплый» старт

Кратко. Навигатор располагает актуальным альманахом, но все без исключения эфемериды устарели, значит, необходимо получить только их.

Расставим все по местам

Если расставить в порядке возрастания времени, необходимого для определения навигатором приемника после включения, получится такая последовательность: «горячий», «теплый», «холодный» старты.

Теперь характеристика навигатора «время холодного/горячего старта» не только не сможет смутить знающего человека, но и даст возможность продемонстрировать свои знания. А ведь все не так уж сложно!

В алгоритме работы навигатора при «холодном» и «горячем» старте упоминалось о вычислении навигатором своих координат.

Как навигатор определяет свои координаты?

Не раз упоминалось, что для определения навигатором своих координат, нужны четыре спутника. Почему именно четыре и какова общая схема этого процесса, попробуем разобраться прямо сейчас.

Простыми словами о сложном

Электромагнитное излучение перемещается в пространстве с конечной скоростью – со скоростью света. Исходя из этого, можно, замерив интервал между моментом начала передачи сигнала и моментом его приема, определить расстояние между передатчиком и приемником.

Навигатор, установив связь со спутниками, располагая загруженными в память альманахом и эфемеридами, принимает сигнал с меткой точного времени от каждого из спутников. По своим внутренним часам навигатор определяет время, которое потребовалось сигналу, чтоб его достичь. Зная скорость распространения сигнала и время, навигатор решает простую задачу – вычисляет расстояние, на котором он находится от спутника.

Включаем объемное мышление. Для однозначного определения положения в трехмерном пространстве относительно точек с известными координатами необходимо знать, где находятся как минимум три точки.

Зная точные координаты трех спутников в определенный момент времени (спасибо альманаху и эфемеридам) и расстояния до них, навигатор и определяет свои координаты на поверхности земного шара. Уже в привязке к двумерным координатам, принятым в картографии (долгота и широта), и к высоте над уровнем моря.

С тремя разобрались. Теперь разберемся с четвертым спутником.

Не думай о секундах свысока

А если речь идет о космической навигации и скорости света – то свысока нельзя думать даже о микросекундах. Малейшая погрешность в измерении времени прохождения сигналом расстояния от навигатора до спутника может вылиться в сотни метров, а то и в километры.

Точность измерения времени – слабое место любой навигационной системы.

На каждом из спутников установлены очень точные (и дорогие и большие) атомные часы, точность хода которых – наносекунды (это 10 –9). Навигаторы оснащены намного менее точными часами – на кварцевом генераторе.

Именно для синхронизации времени в системе навигатора - три спутника и необходим четвертый. Он синхронизирует время и сводит к минимуму погрешности, которые возникают из-за неточности измерения времени. Вернее, он заставляет спутник и навигатор в одно время генерировать одинаковый код. Код этот передается в том самом сигнале, по которому замеряется расстояние. Приняв сигнал с кодом, навигатор определяет, какое время назад он сам генерировал такой код.

Такова схема в общих чертах. На деле все гораздо сложнее: цифровой сигнал подвергается кодированию, синхронизация времени, вычисление координат спутников и своего местоположения – вовсе не простые задачи. Все усложняется еще и тем, что разработчики используют различные уловки для повышения точности измерений: помехоустойчивое кодирование, поправки для нивелирования воздействия эффекта Доплера, поправки на изменение скорости прохождения радиосигнала в тропосфере и ионосфере.

Но это уже тема не краткой поясняющей статьи, а намного более серьёзной и объемной работы.

Навигационные спутники передают два вида данных - альманах и эфимерис .

Альманах - это набор сведений о текущем состоянии навигационной системы в целом, включая загубленные эфемериды, применяемые для поиска видимых спутников и выбора оптимального созвездия, содержащих сведения. Альманах содержит параметры орбит всех спутников. Каждый спутник передает альманах для всех спутников. Данные альманаха не отличаются большой точностью и действительны несколько месяцев.

Данные эфимериса содержат очень точные корректировки параметров орбит и часов для каждого спутника, что требуется для точного определения координат. Каждый навигационный спутник передает данные только своего собственного эфимериса.

Навигационные сообщения - это передаваемые спутником пакетные данные, содержащие эфемериду с метками времени и альманахом.

Сигнал, передаваемый навигационными спутниками, условно можно разделить на два основных компонента: навигационный сигнал (псевдослучайный дальномерный код) и навигационное сообщение (содержащее большое количество сведений о параметрах навигационных спутников). В свою очередь, навигационное сообщение содержит эфемеридные данные и альманах (рис. 3.24). Сразу подчеркнем, что дальномерный код также передается в составе навигационного сообщения, что станет понятным из дальнейшего изложения.

Оперативная информация

(Эфемериды)

Далыюмерный, псевдослучайный код

Неоперативная информация

(Альманах)

Рис. 3.24. Структура сигнала навигационных спутников

Можно сказать, что сигнал навигационных спутников содержит три основных составляющих:

  • 1) псевдослучайный (дальномерный) код;
  • 2) альманах;
  • 3) эфемеридные данные.

Информацию о местоположении спутников навигационные приемники получают именно из данных, содержащихся в альманахах и эфемеридах спутников. Поясним значение термина «эфемерида» (др.-греч. ?(ргщ?р1? - на день, ежедневный). В астрономии это таблица небесных координат Солнца, Луны, планет и других астрономических объектов, вычисленных через равные промежутки времени, например, на полночь каждых суток.

Также эфемеридами называются координаты искусственных спутников Земли, используемых для навигации в системах NAVSTAR (GPS), ГЛОНАСС, Galileo и др. Эфемериды - это уточненная информация об орбите данного конкретного спутника, передающего сигнал, поскольку реальная орбита спутника может отличаться от расчетной. Именно точные данные о текущем положении спутников позволяют навигационному приемнику вычислять точное местоположение спутника и на этой основе рассчитывать собственное местоположение. Данные эфемерид навигационной группировки ГЛОНАСС публикуются на сайте Российского космического агентства (Роскосмос). Состав эфемерид спутников ГЛОНАСС включает, в частности, следующие параметры орбиты спутника :

  • NS - номер спутника;
  • дата - базовая дата (UTC+3 ч), ЧЧ.ММ.ГГ;
  • ТО. - время прохождения восходящего узла (количество секунд от 00 ч 00 мин 00 с базовой даты), с;
  • Т а6 - период обращения, с;
  • е - эксцентриситет;
  • / - наклонение орбиты, °;
  • ЬО - географическая долгота восходящего узла ГЛОНАСС, °;
  • со - аргумент перигея, °;
  • 5/, - поправка к бортовой шкале времени, с;
  • п, - номер литерной частоты;
  • АТ - скорость изменения драконического периода. Драко-ническии период - интервал времени между двумя последовательными прохождениями небесного тела через один и тот же (восходящий или нисходящий) узел орбиты.

Понятие эксцентриситета орбитального эллипса поясняет рис. 3.25:

  • а
  • основная полуось орбитального эллипса - Ь _
  • эксцентриситет орбитального эллипса: е =

Эфемеридные данные являются составной частью альманаха. Получив от альманаха основные примерные параметры орбит всех спутников, навигатор получает от каждого из спутников его собственный эфимерис. По этим точным данным корректируются

Рис. 3.25.

параметры орбит, т.е. данные альманаха. Эфимерисы - это своего рода «надстройка» над альманахом, которая основные параметры превращает в параметры конкретные. Данные эфимериса содержат очень точные корректировки параметров орбит и часов для каждого спутника, что требуется для точного определения координат.

В отличие от альманаха, каждый спутник передает данные только своего собственного эфимериса, и с их помощью навигационный приемник с высокой точностью может определить местоположение спутников.

Эфимерисы, несущие более точные данные, устаревают достаточно быстро. Эти данные действительны только 30 мин. Спутники передают свой эфимерис каждые 30 с. Обновление эфемерид осуществляется наземными станциями. Если приемник был отключен более 30 мин, а потом включен, то он начинает искать спутники, основываясь на известном ему альманахе. По нему он выбирает спутники для инициации поиска.

Когда навигационный приемник фиксирует спутник, идет процесс сбора данных эфимериса. Когда эфимерис каждого спутника принят, данные, принятые от спутника, считаются подходящими для навигации.

Если питание приемника отключить, а потом снова включить в течение 30 мин, то он «поймает» спутники очень быстро, так как не нужно будет снова собирать данные эфимериса. Это «горячий» старт.

Если после отключения прошло более 30 мин, то будет произведен «теплый» старт, и приемник снова начнет собирать данные эфимериса.

Если приемник был перевезен (в выключенном состоянии) на несколько сотен километров или внутренние часы стали показывать неточное время, то данные имеющегося альманаха являются неверными. В таком случае навигатору требуется выполнить загрузку нового альманаха и эфимериса. Это уже будет «холодный» старт.

Обеспечение спутников эфемеридами производит наземный сегмент системы, т.е. на Земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определенный промежуток времени. Измерение и прогноз параметров движения НКА производятся в баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости. Параметры и их прогноз закладываются в навигационное сообщение, передаваемое спутником наряду с передачей навигационного сигнала.

В GPS альманах в комплексе с другими полями данных передается каждые 12,5 мин, в ГЛОНАСС - каждые 2,5 мин. В табл. 3.3 для сравнения приведены два временных параметра альманаха и эфемерисов GPS. Очевидно, что период обновления данных и сроки их актуальности для альманаха и эфимериса существенно различны.

Таблица 3.3

Периоды обновления данных орбит навигационных спутников

В 1973 году данные программы объединили в одну, и военно-воздушные силы США назначили руководящими в разработке системы. Это стало началом истории построения системы NAVSTAR (Navigation Satellite Timing and Ranging) - глобальной системы местоопределения (Global Positioning System). С 1983 года, после того, как к ее информации получили доступ гражданские лица, а в 1991 году были сняты ограничения на продажу GPS-оборудования в страны бывшего СССР, распространение получила широко известная аббревиатура GPS.

Изначально планировалось, что система будет служить для высокоточного наведения боевых ракет, а навигационные функции системы были отодвинуты на второй план.

Первый спутник системы был запущен в 1978 году, а основная часть спутников системы были запущены на орбиты в середине 80-х годов. В 1994-м на орбиту был помещен спутник, позволивший завершить построение системы из 24 спутников.

Период нахождения спутника на орбите примерно равен 10 годам. Отработавшие свой срок спутники планомерно выводят из системы и утилизируют.

В России действует аналогичная система спутниковой навигации ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система), принцип работы которой во многом подобен GPS, точность определения координат которой, однако, заметно меньше.

Спутниковые радионавигационные системы - это всепогодные системы космического базирования. Они позволяют определять текущие местоположения подвижных объектов и их скорость, а также осуществлять точную координацию времени.

В состав системы входят:

  • созвездие ИСЗ (космический сегмент);
  • сеть наземных станций слежения и управления (сегмент управления);
  • GPS-приемники (аппаратура потребителей).

Космический сегмент (орбитальная группировка) системы GPS на данный момент содержит 24 спутника. У каждого спутника имеется порядковый номер (PRN), всего номеров зарезервировано 32. По состоянию на 27 декабря 2005 года, на орбите находилось 29 рабочих спутников, 5 из которых либо уже отработали свой срок, либо готовились к вводу в систему для замены отработавших. Период обращения одного спутника составляет 11 часов 56,9 минут. Вес каждого спутника около 835 кг, линейный размер более 5 м (с развернутыми солнечными батареями). На борту каждого спутника установлены атомные часы, обеспечивающие точность 10 9 (0,000000001) с, вычислительно-кодирующее устройство и передатчик мощностью 50 Вт. Спутники размещены на 6 орбитальных плоскостях. Высота орбит примерно равна 20 200 км, угол наклона орбит составляет 55 градусов (рис. 1).

Передающая аппаратура излучает синусоидальные сигналы на двух частотах: L1 = 1575,42 МГц и L2 = 1227,60 МГц. Перед этим сигналы модулируются псевдослучайными цифровыми последовательностями (эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2 - только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени. Частота L1 предназначена для широкого круга гражданских потребителей, а доступ к сигналам частоты L2 в основном получают военные и федеральные службы США. Точность автономного определения расстояния по P-коду примерно на порядок выше, чем по C/A-коду.

Данные параметры расположения группировки космических аппаратов выбраны не случайно. В любой момент времени в любой точке земного шара можно получить сигналы как минимум от 3-х спутников, что является необходимым условием определения координат. Для более точного определения местоположения необходим сигнал от четвертого спутника.

Наземный сегмент системы представляют контролирующе-измерительные станции для мониторинга спутников. Они расположены на Кваджалейне, на острове Вознесения, на Гавайях, Диего-Гарсия и Колорадо-Спрингс. Также в системе работают три наземные антенны (остров Вознесения, Диего-Гарсия и Кваджалейн). Управление осуществляется на центральной станции, расположенной на авиабазе в Шривере, Колорадо (Schriever Air Force Base, Colorado).

Приемные устройства - GPS-навигаторы - работают в комплексе со спутниками. GPS-навигатор получает со спутников следующую информацию: «псевдослучайный код» (PRN - pseudo-random code), «эфемериды» (ephimeris) и «альманах» (almanach). По наличию этих данных в GPS-навигаторах определяют вид старта или, по-другому, инициализации (под стартом подразумевается начало процесса получения данных хотя бы с 3 спутников, что достаточно для 2D-навигации). Каждый спутник передает только собственную эфемериду, в то время как альманах передается каждым спутником обо всех спутниках сразу. Стартовать приемник может в разных режимах. «Холодный старт» происходит в том случае, когда информация об альманахе и эфемеридах сильно устарела. Данные могут утеряться в случае переноса GPS-приемника на большое расстояние, или же если часы приемника сбились. Как правило, «холодный старт» занимает от нескольких до 45 минут. «Теплый старт» - альманах сохранился, но эфемериды уже потеряны и часы приемника еще «знают» точное время. Такой старт занимает меньше времени, от 30 секунд до 10–15 минут, в зависимости от условий приема. В этом случае GPS-приемнику необходимо получить данные только эфемерид. И, наконец, самый быстрый старт - «горячий». Занимает от нескольких секунд до 5 минут. «Горячий старт» может быть осуществлен, когда в навигаторе имеется и альманах, и эфемериды.

Таким образом, большей частью время между включением и началом выдачи координат зависит от того, как давно было выключено устройство, а также от чувствительности прибора; модель приемника влияет на скорость захвата спутников в меньшей степени.

Функционирование аппаратуры потребителя можно понять из обобщенной схемы (рис. 2).

Основное сообщение, передаваемое с каждого навигационного спутника GPS, формируется в виде кадра. Поток навигационных данных передается со скоростью 50 бит/с. Длительность информационного символа «0» или «1» равна 20 мс. Кадр состоит из пяти под-кадров, причем четвертый и пятый подкадры разделены на 25 страниц каждый. Подкадры с первого по третий, а также каждая страница четвертого и пятого подкадров содержат по 300 символов, которые разделены на 10 слов по 30 символов в слове.

В таблице 1 показана информация, передаваемая с навигационного спутника.

Таблица 1.

Таблица 2.

Нулевой отсчет времени GPS определен в полночь с 5 на 6 января 1980 года. Неделя является самой большой единицей измерения времени в системе GPS. Неделя определена как 604 800 с.

Эфемериды представляют собой уточненные параметры движения спутников. Основываясь на данных альманаха, GPS-приемник «сканирует» небо и при получении данных от спутника уточняет его эфемериды.

Рис. 3.

Чтобы понять, как GPS-навигатор определяет координаты, необходимо иметь представление о системе координат, в которой происходит движение спутников и определение координат конечных потребителей.

Наблюдатель на Земле может представить небесную сферу, спроецированную на плоскость так, чтобы центр совпадал с местоположением наблюдателя.

Именно в этой проекции пользователю GPS-навигатором показывается примерное расположение спутников (рис. 3).

Как видно из рисунка (снимок с экрана GPS-навигатора), спутников в пределах видимости находится девять (снимок производился при включенном режиме симуляции, то есть когда навигатор не ловит сигналы со спутников, а моделирует возможные ситуации). В реальности спутников на проекции сферы видно не более восьми, а сигналы принимаются максимум с четырех-шести. Закрашенный столбик над номером спутника показывает на устойчивый прием сигналов, а высота столбца позволяет оценить качество приема. В момент, когда GPS-навигатор начинает получать информацию со спутника, над его номером появляется незакрашенный прямоугольник. Закрашивается он при уточнении параметров орбиты спутника и начале получения данных, на основе которых идет непосредственный расчет координат пользователя.

Данные спутниковых систем и параметры орбит спутников рассчитываются относительно центра масс Земли. В бытовых GPS-навигаторах используется единая система координат, наиболее популярная в системах гражданской авиации, WGS-84.

Глобальная система координат WGS–84 определена следующим образом.

Начало координат 0 расположено в центре массы Земли;

  • ось 0Х - пересечение плоскости исходного меридиана WGS–84 и плоскости экватора;
  • ось 0Z - направлена на Северный полюс Земли;
  • ось 0У - дополняет систему до правой системы координат.

Исходный меридиан WGS–84 совпадает с нулевым меридианом, определенным Международным бюро времени (BIN).

При наличии сигнала от одного спутника (№1), известной скорости распространения электромагнитного сигнала в пространстве (300 000 км/с) и времени, за которое сигнал дошел от спутника до GPS-приемника, стало возможным рассчитать геометрическое место точек нахождения приемника сигнала (им будет являться сфера с радиусом, равным расстоянию от спутника до приемника, в центре которой находится спутник).

Если GPS-навигатор начал принимать сигналы от второго спутника, то аналогично первому случаю, строится сфера вокруг спутника №2. Так как GPS-приемник должен находиться на обеих сферах сразу, то теперь строим пересечение двух сфер. Каждая точка получившейся окружности может являться местом нахождения приемника в пространстве.

Наконец, когда приемник поймает сигнал от спутника №3, строится еще одна сфера, при пересечении с окружностью она дает нам две точки. Одна из этих точек, как правило, имеет довольно неправдоподобное расположение, и в процессе вычисления по алгоритму она отбрасывается. Таким образом, мы получаем результат: широту и долготу.

Но если учитывать огромную скорость распространения электромагнитной волны, ошибка в расчетах на тысячные доли секунды может привести к довольно серьезным погрешностям в вычислении расстояния до спутника, а затем и в построении сфер и определении координат. Таким образом, мы подобрались к одному важному нюансу - для корректного определения координат необходим четвертый спутник.

После построения трех сфер приемник начинает манипулировать с временной задержкой. При каждом новом сдвиге времени приемника строятся новые сферы, точка пересечения их «расплывается» в треугольник. То есть сферы перестают пересекаться, а местоположение GPS-приемника может с определенной вероятностью быть в любой из точек треугольной области. Затем временные сдвиги продолжаются до тех пор, пока все три сферы снова не пересекутся в одной точке. Получаем довольно точные координаты. И чем больше спутников «видит» навигатор, тем точнее мы можем скорректировать время с вытекающим из этого увеличением точности позиционирования. При наличии четвертого спутника начинает работать так называемая 3D-навигация, и мы имеем возможность определить высоту над уровнем моря, скорость передвижения по поверхности и скорость вертикального перемещения.

Немного о точности. При создании системы в нее специально внесли так называемый режим S/A (Selective Availability - ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Принцип действия данного режима заключается в искусственном рассогласовании часов спутника и приемника. Поэтому даже при хорошем приеме сигналов нескольких спутников точность не превышала 100 метров. Однако в 2000 году данный режим был отменен, и официально система GPS стала давать возможность определять координаты более точно. Как правило, указывают точность в 20…30 метров. Если использовать специальные алгоритмы пост-обработки, точность можно повысить вплоть до нескольких миллиметров, но это умеют делать геодезические системы. Для работы с такими системами нужен сертификат и разрешение, а их стоимость превышает стоимость бытовых навигаторов в десятки раз.

На точность определения координат существенное влияние оказывают ошибки, возникающие при выполнении процедуры измерений. Природа этих ошибок различна.

  1. Неточное определение времени. Вносит погрешность порядка 1 метра.
  2. Погрешности вычисления орбит спутников (уточнения эфемерид). Вносят погрешность порядка 1 метра.
  3. Ионосферные задержки сигнала. Вносят погрешность до 10 метров.
  4. Многолучевое отражение от высоких зданий, других объектов. Вносит погрешность до 2 метров.
  5. Геометрическое расположение спутников.
  6. Тропосферные задержки сигнала.

Литература

  1. Лекции доктора технических наук Валерия Викторовича Конина. http://www.kvantn.com.ua/resourse/All/lections/lect_cont.html /ссылка утрачена/
  2. Информация с сайта http://www.datalogger.ru/gps/ /ссылка утрачена/
  3. Информация с сайта http://www.ixbt.com/mobile/gps.html
  4. Информация на форуме сайта http://www.gpsinfo.ru/ /ссылка утрачена/
  5. Информация с сайта

Вам также будет интересно:

Красная Крета — яркий и стильный на дороге Грета черный цвет
Стремительные линии в дизайне экстерьера передают совершенное визуальное проявление...
Как изменить вращение асинхронного электродвигателя
Достаточно часто режим работы вспомогательного механизированного оборудования требует...
Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз
В агентстве сообщили, что суда типа "Лира" с осадкой менее 4,5 метра или длиной менее 140...
Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом
Следователи возбудили уголовное дело в связи со столкновением турецкого сухогруза с опорой...
Преимущества приобретения авто в лизинг
Что выбрать – лизинг, кредит или покупку за счет собственных средств? Множество компаний...