Автомобильный - Mirtaxibel

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Красная Крета — яркий и стильный на дороге Грета черный цвет

Как изменить вращение асинхронного электродвигателя

Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз

Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом

Преимущества приобретения авто в лизинг

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Основные неисправности кондиционера и пути их устранения

Расчет установки утилизации теплоты отходящих газов технологической печи Экономия топлива при использовании теплоты отходящих газов

Как определить неисправность стойки стабилизатора — отвечают эксперты Признаки умирания амортизаторов

Чиним и меняем замок зажигания «железного коня»: курс начинающего автолюбителя

Распиновка проводов камеры заднего вида авто

Кто придумал Паровой двигатель - Когда Изобрели?

"Лада Гранта Спорт": отзывы, технические характеристики и цена

Ремонт и диагностика импульсных источников питания. Принцип работы импульсных блоков питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Большинство современной бытовой электронной аппаратуры имеет в своей конструкции самостоятельные или расположенные на отдельной плате электронные модули понижающие и выпрямляющие сетевое напряжение.

Причём последние 20 лет, вместо традиционных понижающе-выпрямительных схем на основе силового трансформатора и диодного моста, они построены по схеме импульсного преобразования напряжения. Несмотря на их высокую схемотехническую надежность они достаточно часто выходят из строя.

Причин здесь несколько, но основными из них являются:

  • колебания сетевого напряжения, на которые не рассчитаны эти понижающе-выпрямительные устройства;
  • несоблюдение правил эксплуатации;
  • подключение нагрузки, на которую не рассчитаны приборы.

Конечно бывает очень обидно, когда необходимо выполнить срочную работу, а модуль питания у компьютера неисправен или во время просмотра любимой телепередачи это устройство выходит из строя.

Не стоит сразу впадать в панику и обращаться в ремонтную мастерскую или спешить в супермаркет электроники за приобретением нового блока. Часто причины неработоспособности настолько тривиальны, что устранить их можно дома, с минимальными затратами финансовых средств и нервов.

Общее описание бытового импульсного питающего устройства

Конечно для того чтобы попытаться не только отремонтировать импульсный блок питания, но и определить его неисправность необходимо иметь базовые знания по электронике и обладать определенными электротехническими навыками.

Кроме того, следует помнить, что некоторые элементы блока находятся под сетевым напряжением, в силу чего даже при первичном осмотре устройства следует соблюдать осторожность. Однако большинство блоков построены по типовым схемам и имеют сходные неисправности, поэтому самостоятельно отремонтировать импульсный блок питания может попытаться каждый.

В составе любого источника питания, будь то встроенный, как в телевизоре или установленный в виде отдельного устройства, как в настольном компьютере, имеются два функциональных блока – высоковольтный и низковольтный.

В высоковольтном боке, сетевое напряжение преобразуется диодным мостом в постоянное, и сглаживается на конденсаторе до уровня 300,0…310,0 вольт. Постоянное, высокое напряжение преобразуется в импульсное, частотой 10,0…100,0 килогерц, что позволяет отказаться от массивных низкочастотных понижающих трансформаторов, заменив их малогабаритными импульсными.

В низковольтном блоке импульсное напряжение понижается до необходимого уровня, выпрямляется, стабилизируется и сглаживается. На выходе этого блока присутствует одно или несколько напряжений, необходимых для питания бытовой техники. Кроме того, в низковольтном блоке смонтированы различные управляющие схемы, позволяющие повысить надежность устройства и обеспечить стабильность выходных параметров.

Визуально, на реальной плате, различить высоковольтную и низковольтную часть достаточно просто. К первой подходят сетевые провода, а от второй отходят питающие.


Импульсный стабилизатор в блоке питания на транзисторах

Диагностирование и простейший ремонт

Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.

Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.

Как показывает статистика, основные неисправности блока питания вызваны:

  • неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
  • пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
  • пробоем диодного моста (15,0%) в низковольтной части;
  • пробоем (выгоранием) обмоток дросселя выходного фильтра.


В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.

Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.

При перегорании предохранителя необходимо осмотреть электронную плату. Неисправность фильтрующего электролитического конденсатора обычна выражена его вздутием. Для проверки диодов высоковольтной выпрямительной части придется выпаять каждый из них и (тестером).

Желательно проверку производить одновременно всех деталей. При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.

После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.

Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.

Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.

Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.


Ремонт стандартных устройств

Как уже говорилось, большинство блоков питания современных компьютеров и телевизоров построено по типовой схеме. Они отличаются типоразмерами используемых электронных деталей и выходной мощностью. Методика диагностирования и устранения неполадок для этих устройств идентичны.

Однако качественный ремонт требует соответствующего инструмента, в номенклатуру которого входят:

  • (желательно с регулируемой мощностью);
  • припой, флюс, спирт или очищенный бензин («Галоша);
  • приспособление для удаление расплавленного припоя (оловоотсос);
  • набор отверток;
  • бокорезы (кусачки);
  • бытовой мультиметр (тестер)
  • пинцет;
  • лампа накаливания на 100,0 ватт (используется в качестве балластной нагрузки).

Приступая к ремонту телевизионного питающего устройства или системы настольного компьютера желательно иметь их электрическую принципиальную схему. Сегодня сделать это нетрудно – подобные материалы для большинства моделей электронной техники можно найти в Интернете.

В принципе простые телевизоры можно ремонтировать без схемы, однако главной сложностью ремонта некоторых моделей является то, что питающее устройство вырабатывает весь спектр напряжений – включая высоковольтное, используемое для развертки кинескопа. Блоки питания бытовых компьютеров выполнены по однотипной схеме. Рассмотрим отдельно методику определения неисправности и ремонта телевизора и десктопа.

Ремонт телевизора

О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:

  • проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
  • разборка телевизионного приемника и освобождение электронной платы;
  • осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
  • проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.

Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов. К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.

В практике ремонта имеют место случаи, когда модуль питания не работает (не запускается) а предохранитель не сгорел. Это может свидетельствовать о пробое (перегорании) транзистора генератора высокочастотных импульсов.

Наиболее частыми причинами неработоспособности телевизионных блоков является:

  • обрыв балластных сопротивлений;
  • неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
  • неисправность конденсаторов фильтров вторичного напряжения;
  • пробой или перегорание выпрямительных диодов.

Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.

Здесь возможны несколько вариантов поведения отремонтированного устройства:

  1. Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
  2. Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:
    • пробит один из диодов выпрямительного моста;
    • велика утечка конденсатор (конденсатор «состарился»).

    Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.

  3. Если свечение лампочки велико, необходимо тут же отключить модуль питания от сети и заново провести проверку всех электронных деталей.

Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.


Ремонт питающего устройства настольного компьютера

Сегодня наибольшее распространение для питания настольных (десктопных) конструкторов получили устройства «АТХ» различной мощности. Поводом для их ремонта должно послужить:

  • материнская плата не запускается (компьютер полностью неработоспособен);
  • вентилятор охлаждения самого устройства не вращается;
  • блок многократно «пытается» самозапуститься.

Перед началом ремонта устройств «АТХ» необходимо собрать нагрузочную схему (рисунок). Ремонт осуществляют в следующей последовательности:

  • устройство вынимается из компьютера и с него снимается кожух;
  • пылесосом и кисточкой удаляется пыль с электронных плат и поверхностей деталей;
  • производится внешний осмотр электронных элементов и печатных плат;
  • подключается нагрузочное устройство.

При отсутствии внешних признаков причины неисправности проверяют предохранитель. В случае его перегорания на его место подключается лампа накаливания мощностью 100,0 ватт (аналогично ремонту телевизионного блока).

Если при включении лампа ярко вспыхивает и продолжает гореть, значит из строя вышел диодный мост в высоковольтной части или фильтрующий конденсатор. Возможно перегорание высоковольтного трансформатора.

Если предохранитель цел, то причиной неработоспособности может быть:

  • выход из строя транзисторов генератора импульсов;
  • неисправность ШИМ-контроллера.

В этих случаях проще приобрести новое устройство, которое в зависимости от мощности, стоит от 600…800 рублей.

При многократном самозапуске устройства причиной неработоспособности обычно является вход из строя стабилизатора опорного напряжения. При этом система компьютера не может пройти режим самотестирования отключает и включает модуль питания.

При диагностике телевизионных устройств на отыскание неисправного компонента тратится несоизмеримо больше времени, чем на его замену, особенно, если поиск дефекта осуществляется своими силами, а не профессиональным телемастером. Безусловно, логичнее поручить ремонт специалисту, имеющему опыт и большую практику такого рода работ, но если есть желание, навыки обращения с паяльником и тестером, необходимая техническая документация в виде принципиальной электрической схемы, можно попытаться починить телевизор на дому самостоятельно.

Блок питания современного телевизора, будь то плазменная панель или ЖК, LED тв, представляет собой импульсный источник питания с заданным диапазоном выходных питающих напряжений и номинальной мощностью, отдаваемой в нагрузку по каждому из них. Плата питания может быть выполнена в виде отдельного блока, это характерно для приемников небольших диагоналей, или интегрирована в телевизионное шасси и располагаться внутри устройства.

Характерными признаками неисправности этого блока являются следующие:

  • Телевизор не включается при нажатии на кнопку сетевого выключателя
  • Светодиод дежурного режима горит, но нет перехода в рабочий режим
  • Помехи на изображении в виде изломов и полос, фон по звуку
  • Есть звук, но нет изображения, которое может появиться спустя некоторое время
  • Требуется несколько попыток включения для появления нормальной картинки и звука

Разберем схемотехнику стандартного блока питания и его типовые неисправности на примере телевизора ViewSonic N3260W.

Для полноценного просмотра схемы ее можно открыть в новом окне и увеличить, либо загрузить себе на компьютер или мобильное устройство

Первое, с чего следует начать, это тщательный визуальный осмотр платы на выключенном из сети аппарате. Для этого блок необходимо демонтировать из телевизора, отсоединив разъемы, и обязательно разрядить высоковольтный конденсатор в фильтре - C1. В блоках этой серии телевизоров довольно часто выходят из строя электролитические конденсаторы фильтров вторичных источников питания. Они легко диагностируются по вздутой верхней крышке. Все конденсаторы, внешний вид которых вызывает сомнение, необходимо сразу заменить.

Узел дежурного режима выполнен на IC2 (TEA1532A) и Q4 (04N70BF) с элементами стабилизации выходного напряжения 5V на оптроне IC7 и управляемом стабилитроне ICS3 EA1. Отсутствующее или заниженное напряжение на выходе этого узла, измеренное на конденсаторах CS22, CS28, свидетельствует о его неправильной работе. Опыт восстановления этого участка схемы свидетельствует, что более всего уязвимы элементы IC2, Q7, ZD4 и Q11, R64, R65, R67, которые требуют проверки и замены в случае необходимости. Работоспособность деталей проверяется тестером непосредственно на плате блока. При этом сомнительные комплектующие выпаиваются и тестируются отдельно, для исключения влияния на их показатели соседних элементов схемы. Микросхема IC2 просто подлежит замене.

При наличии на выходе схемы дежурного режима напряжения 5V на лицевой панели телевизора загорается красный светодиод. По команде с пульта или кнопки на лицевой панели телевизора блок питания должен перейти в рабочий режим. Эта команда - Power_ON - в виде высокого потенциала около 5V приходит на 1 вывод разъема CNS1, открывая ключи на QS4 и Q11. При этом на микросхемы IC3 и IC1 подаются питающие напряжения, переводя их в рабочий режим. На 8 вывод IC3 непосредственно с коллектора Q11, на 12 вывод IC1 через ключ Q9 после запуска схемы PFC. Работоспособность схемы коррекция коэффициента мощности (Power Factor Correction) косвенно определяется увеличением напряжения с 310 до 390 вольт, измеренным на конденсаторе C1. Если появились выходные питающие напряжения 12V и 24V, то и основной источник на IC3, Q1, Q2 функционирует в нормальном режиме. Практика показывает низкую надежность UCC28051 и LD6598D в критических условиях, когда ухудшается фильтрация вторичных источников, а их замена носит рядовой характер.

Обобщая опыт ремонта телевизионных блоков питания следует отметить, что самым слабым звеном в их составе являются конденсаторы фильтров, теряющие со временем свои свойства и номинальные параметры. Иногда неисправная "емкость" видна по вздутой крышке, иногда нет. Последствия плохой фильтрации выпрямленного напряжения могут быть самыми разными: от потери работоспособности самого источника питания, до повреждения элементов инвертора или сбоя программного обеспечения у микросхем памяти на материнской плате.

Самостоятельно разобраться во всех причинах и следствиях при ремонте блока питания современного телевизора, правильно его диагностировать без специальных инструментов и приборов весьма затруднительно. Наш совет в таких случаях -

Очень часто ко мне обращаются мои клиенты с проблемой, что не работает блок питания на каком-либо устройстве. Блоки питания я делю на две категории: «простые» и «сложные». К «простым» я отношу антенные, блоки питания от каких-либо игровых приставок, от переносных телевизоров и другие подобные, которые непосредственно включаются в розетку. Одним словом – выносные, т.е. отдельно от основного устройства. «Сложные» в моей схеме распределения – это блоки питания, которые стоят в самом устройстве. Ну, «сложные» мы, пока оставим в покое, а вот о «простых» поговорим.

Существует не очень много причин выхода из строя выносных блоков питания . Перечислю их все:

  1. Обрыв в обмотках трансформатора (первичная и вторичная);

  2. Короткое замыкание в обмотках трансформатора;

  3. Выход из строя выпрямителя напряжения (диодный мост, конденсатор, стабилизатор и связанные с ним радиоэлементы).

Если, при поломки блока, на его выходе напряжения отсутствуют совсем, то, скорее всего, причина в трансформаторе. Если же на выходе присутствует заниженное напряжение, то дело в выпрямители. Проверить трансформатор можно измерив сопротивление на его обмотках. На первичной обмотке сопротивление должно быть более 1 кОма, на вторичной или вторичных – менее 1 кОма. В некоторых блоках питания , на первичной обмотке, под обёрткой, которой оборачивается сама обмотка, ставится предохранитель. Чтобы до него добраться, нужно разорвать обёртку на этой обмотке. Чаще всего, такой механизм защиты присутствует в трансформаторах китайского производства. Так что если первичная обмотка не прозванивается, то проверьте, может быть на ней установлен предохранитель.

С трансформатором разобрались. Теперь перейдём к проверке выпрямителя напряжения и его компонентам. Самая распространённая поломка в блоках питания – это выход из строя одного или нескольких элементов, из которых, собственно, и состоит выпрямитель напряжения. Вот эти причины мы с вами и будем обсуждать в данной статье. Будем производить ремонт блока питания своими руками .

Рассмотрим это на примере антенного блока питания с выходным напряжением 12 В .

На данном блоке питания заниженное выходное напряжение: вместо положенных 12 Вольт , он выдаёт 10 Вольт . Итак приступим к устранению данной проблемы. Для начала, естественно, нужно разобрать сам блок. После того, как мы убедимся, что трансформатор в данном устройстве цел, переходим к проверке элементов выпрямителя.

В первую очередь проверяем диодный мост – это четыре диода, к которым идут контакты от вторичной обмотке трансформатора. Как проверять диоды я рассказал в видео, которое вы найдёте в конце этой статьи. В нашем блоке диодный мост цел. Теперь смотрим на конденсатор: бывает, что конденсаторы «вздуваются». У нас конденсатор не «вздутый». Если диодный мост и конденсаторы целы, осматриваем плату выпрямителя на предмет почернения или обгорания элементов, стоящих на плате.

Если визуально всё в порядке, то смело выпаиваем стабилизатор напряжения. В данном выпрямители стоит стабилизатор напряжения 12 Вольт – 78L12. Почти всегда именно этот элемент выходит из строя. Перед извлечением этой детали из платы, запомните как была эта деталь установлена на плате, чтобы при замене не перепутать полярность. Вместе со стабилизатором рекомендую заменить также конденсатор, это для надёжности, так как чаще всего он тоже выходит из строя.

После замены этих деталей, проверьте – не отпаялись ли в процессе ремонта от контактов проводки, идущие от трансформатора.

Если всё хорошо, собираем наш . Замеры, произведённые после нашего ремонта данного блока питания, показали на выходе напряжение 12 Вольт , что, в общем-то, нам и требовалось. Всё!

Телевизор Bravis LED-16E96B после перепада напряжения.

Блок питания собран на ШИМ контроллере SW2658a .
Микросхема редкая, но как не странно есть в наличии даташит. И больше ничего.

SW2658-типовая-схема. Адаптер БП китайского телевизора.

Адаптер питания, как положено погиб со спецэффектами.
Сам телевизор не пострадал, проверил с помощью рабочего блока питания.

Адаптер вскрывается с помощью не острой отвёртки и молотка. Лёгкими ударами по шву. Затем широкой отверткой разлущивается дальше.

Визуально, вздулся один из сетевых конденсаторов 15 мкф х 400 вольт.
Естественно оборван предохранитель. Грохнуло хорошо, плату местами пришлось отмывать спиртом.

Поначалу даже не сообразил, от чего закоптилась плата. Позже вызвонил под силиконом оборванный дроссель L1 намотанный на ферритовом сердечнике. Пермотал тем же проводом.

Пришлось выкинуть всего сантиметров 15 провода. Намотано было виток к витку. Мотал не так аккуратно, первые слои ровно, дальше как получилось. На работоспособности это никак не отразилось.

Дроссель в БП с отгоревшим проводом

Пришлось вспомнить старую технологию)
Взял любимый ШИМ контроллер, который раньше ставил в DVD , приёмники, адаптеры… 5H0165R.


Трансформатор (1

Электронная схема служит для выпрямления переменного напряжения (превращение его в постоянное напряжение) и стабилизации выходного напряжения на уровне 12 В.


На принципиальной схеме T1 трансформатор . Типичными неисправностями трансформатора являются перегорание или обрыв провода первичной, реже вторичной обмотки . Как правило, неисправна первичная, сетевая обмотка (1 ).

Сопротивление первичной обмотки должно составлять несколько единиц килоом (1кОм = 1000 Ом), вторичной – несколько десятков Ом.

25,5 Ом , что тоже нормально.

C1 (100 мкФ 16В) 470 мкФ (25В)

Сетевые адаптеры питания – миниатюрные блоки питания различной электронной бытовой аппаратуры применяются для питания антенных усилителей, радиотелефонов, зарядных устройств. Несмотря на активное внедрение импульсных блоков питания, трансформаторные блоки питания ещё активно используются и находят применение в быту пользователя.

Нередки случаи, что данные трансформаторные блоки выходят из строя, ломаются.

При поломке адаптера можно его заменить новым, стоимость их невелика. Но зачем отдавать кровные, если в большинстве случаев можно устранить неисправность самому в течение 15 – 30 минут и избавить себя от поисков замены и траты денег?

Итак, разберём состав обычного маломощного блока питания и его ремонт

На стол ремонта попал адаптер на 12В и ток 100mA мощностью 3,6 Ватт от антенного усилителя.

На фото адаптер после произведённого ремонта.

Из каких частей состоит обычный трансформаторный адаптер?

Если разобрать адаптер, то внутри мы обнаружим трансформатор (1 ) и небольшую электронную схему (2 ).

Трансформатор (1 ) служит для понижения переменного сетевого напряжения 220В до уровня 13 – 15 В.

Электронная схема служит для выпрямления переменного напряжения (превращение его в постоянное напряжение) и стабилизации выходного напряжения на уровне 12 В.
Всё просто. Что же может сломаться в таком простом устройстве?

Взглянем на принципиальную схему данного адаптера.


На принципиальной схеме T1 трансформатор . Типичными неисправностями трансформатора являются перегорание или обрыв провода первичной, реже вторичной обмотки. Как правило, неисправна первичная, сетевая обмотка (1 ).

Причиной обрыва или перегорания служит тонкий провод, который не выдерживает сетевых всплесков напряжения и перегрузок. Скажем спасибо китайцам, они экономные ребята, потолще провод не хотят мотать…

Проверить исправность трансформатора довольно просто. Необходимо измерить сопротивление первичной и вторичной обмоток. Сопротивление первичной обмотки должно составлять несколько единиц килоом (1кОм = 1000 Ом), вторичной – несколько десятков Ом.

При проверке трансформатора адаптера для первичной обмотки сопротивление оказалось 1,8 кОм, что свидетельствует об исправности первичной обмотки.

Для вторичной обмотки сопротивление составило 25,5 Ом , что тоже нормально.

При отсутствии индикации следует замерить сопротивление первичной обмотки трансформатора. Сделать это легко, можно даже не разбирать блок питания, а замерить сопротивление обмотки через контакты сетевой вилки.

Разбираем блок питания, производим внешний осмотр. Обращаем внимание на потемневшие участки вокруг радиодеталей, сколы и трещины на корпусах стабилизатора питания (78L12), вздутия конденсаторов фильтра.

В процессе ремонта антенного адаптера выяснилось, что неисправна микросхема стабилизатора 78L12. Был также заменён электролитический конденсатор C1 (100 мкФ 16В) на конденсатор с большей ёмкостью – 470 мкФ (25В) . При замене конденсатора следует учитывать полярность включения конденсатора.

Знать цоколёвку (расположение и назначение) выводов стабилизатора 78L12 не обязательно, необходимо либо запомнить, зарисовать или сфотографировать расположение неисправной микросхемы на электронной плате и запаять исправную деталь, как только найдёте. Эта простая операция сэкономит Ваше время, если выпаяли неисправную микросхему, а замену вовремя не нашли и забыли как была впаяна микросхема.

Импульсный блок питания вмонтирован в большинство бытовых приборов . Как показывает практика, именно этот узел довольно часто выходит из строя, требуя замены.

Большое напряжение, постоянно проходящее через блок питания, не лучшим образом сказывается на его элементах. И дело здесь не в ошибках производителей. Повышая срок службы путём монтирования дополнительной защиты, можно добиться надёжности защищаемых деталей, но потерять её на только что установленных. Кроме того, дополнительные элементы усложняют ремонт – становится трудно разобраться во всех хитросплетениях полученной схемы.

Производители решили эту проблему радикально, удешевив ИБП и сделав его монолитным, неразборным. Такие одноразовые устройства встречаются всё чаще. Но, если вам повезло – отказал разборной блок, самостоятельный ремонт вполне возможен.

Принцип работы у всех ИБП одинаков. Различия касаются только схем и типов деталей. Поэтому разобраться в поломке, имея основополагающие познания в электрике, довольно просто.

Для ремонта понадобится вольтметр.

С его помощью измеряется напряжение на электролитическом конденсаторе. Он выделен на фото. Если напряжение 300 В – предохранитель цел и все остальные, связанные с ним элементы (сетевой фильтр, кабель питания, входные) исправны.

Бывают модели с двумя небольшими конденсаторами. В этом случае о нормальном функционировании упомянутых элементов свидетельствует постоянное напряжение 150 В на каждом из конденсаторов.

При отсутствии напряжения нужно прозвонить диоды выпрямительного моста, конденсатор, сам предохранитель и так далее. Коварство предохранителей в том, что, выйдя из строя, они внешне ничем не отличаются от рабочих образцов. Обнаружить неисправность можно только через прозвонку – сгоревший предохранитель покажет высокое сопротивление.

Обнаружив неисправный предохранитель, следует внимательно осмотреть плату, так как выходит он из строя зачастую одновременно с другими элементами.

Испорченный конденсатор легко заметить невооружённым глазом – он будет разрушен или вздут.

В таком случае он не нуждается в прозванивании, а просто выпаивается. Также выпаиваются и прозваниваются следующие элементы:

  • силовой или выпрямительный мост (выглядит как монолитный блок или может состоять из четырёх диодов);
  • конденсатор фильтра (выглядит как большой блок или несколько блоков, соединённых параллельно или последовательно), находящийся в высоковольтной части блока;
  • транзисторы, установленные на радиаторе (это – силовые ключи).

Важно. Все детали выпаиваются и заменяются одновременно! Замена по очереди будет приводить каждый раз к выгоранию силовой части.

Сгоревшие элементы нужно заменить на новые. Радиорынок предлагает богатый ассортимент деталей для блоков питания. Подобрать неплохие варианты по минимальным расценкам довольно легко.

На заметку. Предохранитель можно успешно заменить кусочком медного провода . Толщина провода в 0.11 миллиметра соответствует предохранителю на 3 Ампера.

Причины поломки :
  • перепады напряжения;
  • отсутствие защиты (место под неё есть, но сам элемент не установлен – так производители экономят).

Решение этой неисправности импульсных блоков питания:

  • установить защиту (не всегда возможно подобрать нужную деталь);
  • или использовать фильтр сетевого напряжения с хорошими защитными элементами (не перемычками!).

Что делать, если нет выходного напряжения?

Ещё одна часто встречающаяся причина неисправности блока питания никак не связана с предохранителем. Речь идёт об отсутствии выходного напряжения при полностью исправном таком элементе.
Решение проблемы :

  1. Вздутый конденсатор – требуется выпаивание и замена.
  2. Вышедший из строя дроссель – необходимо вынуть элемент и поменять обмотку. Повреждённый провод разматывается. При этом ведётся подсчёт витков. Затем на это же количество оборотов наматывается новый провод подходящего. Деталь возвращается на место.
  3. Деформированные диоды моста заменяются новыми.
  4. При необходимости детали проверяются тестером (если визуально не обнаружено повреждений).

Перед тем, необходимо обязательно изучить правила безопасного использования такого инструмента. Таким прибором нельзя светить в отражающие поверхности, поскольку можно повредить глаза.

Вполне по силам соорудить самому. В качестве нагнетателя используется вентилятор, а нагревателя - спираль. Наиболее оптимальным вариантом является схема с тиристором.

Причины поломки :

  • плохая вентиляция.

Решение :

  • не закрывать вентиляционные отверстия;
  • обеспечить оптимальный температурный режим – охлаждение и вентиляцию.

Что необходимо запомнить :

  1. Первое подключение блока производится к лампе мощностью 25 Ватт. Особо важно это после замены диодов или транзистора! Если где-то допущена ошибка или не замечена неисправность, проходящий ток не повредит всё устройство в целом.
  2. Начиная работу, не стоит забывать, что на электролитических конденсаторах длительное время сохраняется остаточный разряд. Перед выпаиванием деталей необходимо закоротить выводы конденсатора. Напрямую этого делать нельзя. Следует произвести закорачивание через сопротивление номиналом выше 0,5 В.

Если весь ИБП тщательно проверен, но всё равно не работает, можно обратиться в ремонтную мастерскую. Возможно, ваш случай относится к сложной поломке всё-таки поддающейся исправлению.

По статистике около 5% поломок требуют замены блока. К счастью, это устройство всегда доступно. В магазинах можно обнаружить богатый ассортимент в разных ценовых категориях.

Вам также будет интересно:

Запрещающие знаки Знак
1. При эксплуатации эвакуационных путей и выходов руководитель организации обеспечивает...
Когда отменят эра глонасс на ввозимые автомобили
Как регламентируется ввоз автомобиля без Эра-Глонасс, и какие требования выставляет таможня...
Водородный двигатель: принцип работы и устройство
03.02.2016 Ресурсы нашей планеты не бесконечны, в том числе и запасы «черного золота»...
Как заводится зимой в сильные морозы
Зимняя пора с ее низкими температурами доставляет нам хлопоты, особенно при запуске...
Как заправить зажигалку бензином
В основу механизма зажигалки лег замок пистолета. Безымянный изобретатель в девятнадцатом...