Автомобильный - Mirtaxibel

Цвета Рено Каптур – широкие возможности персонализации Каптур темная сталь

Красная Крета — яркий и стильный на дороге Грета черный цвет

Как изменить вращение асинхронного электродвигателя

Названы причины столкновения турецкого сухогруза с керченским мостом 23 марта что вез турецкий сухогруз

Названы причины столкновения турецкого сухогруза с керченским мостом Столкновение турецкого сухогруза с керченским мостом

Преимущества приобретения авто в лизинг

Переделка шуруповерта на литий ионный аккумулятор Перевод шуруповерта на li ion аккумуляторы схема

Датчики частоты вращения двигателя Датчик готовится к выпуску

Основные неисправности кондиционера и пути их устранения

Расчет установки утилизации теплоты отходящих газов технологической печи Экономия топлива при использовании теплоты отходящих газов

Как определить неисправность стойки стабилизатора — отвечают эксперты Признаки умирания амортизаторов

Чиним и меняем замок зажигания «железного коня»: курс начинающего автолюбителя

Распиновка проводов камеры заднего вида авто

Кто придумал Паровой двигатель - Когда Изобрели?

"Лада Гранта Спорт": отзывы, технические характеристики и цена

Контроллер заряда разряда акб li ion. Защита литий-ионных аккумуляторов (контроллер защиты Li-ion)

Контроллеры сами по себе устройства полезные. И чтобы лучше разобрать эту тему, необходимо работать с определённым примером. Поэтому мы и рассмотрим контролер заряда аккумулятора. Что он собой представляет? Как устроен? Какие особенности работы существуют?

Чем занимается контроллер заряда аккумулятора

Он служит для того, чтобы следить за восстановлением энергетических потерь и тратами. Сначала он занимается отслеживанием превращения электрической энергии в химическую, чтобы в последующем при наличии надобности было снабжение требуемых схем или приборов. Сделать контроллер заряда аккумулятора своими руками не сложно. Но его также можно извлечь из источников питания, которые вышли из строя.

Как устроен контроллер

Конечно, универсальной схемы не существует. Но многие в своей работе используют два посдтроечных резистора, которые регулируют верхний и нижний предел напряжения. Когда оно выходит за заданные рамки, то начинается взаимодействие с обмотками реле, и оно включается. Пока оно работает, напряжение не опустится ниже определённого, технически заранее предусмотренного уровня. Тут следует поговорить о том, что существует различный диапазон границ. Так, для аккумулятора может быть установлено и три, и пять, и двенадцать, и пятнадцать вольт. Теоретически всё упирается в аппаратную реализацию. Давайте рассмотрим, как работает контроллер заряда аккумулятора в разных случаях.

Какие бывают типы

Следует отметить значительное разнообразие, которым могут похвастаться контроллеры заряда аккумулятора. Если говорить о их видах, давайте сделаем классификацию в зависимости от сферы применения:

  1. Для возобновляемых источников энергии.
  2. Для бытовой техники.
  3. Для мобильных устройств.

Конечно, самих видов значительно больше. Но поскольку мы рассматриваем контроллер заряда аккумулятора с общей точки зрения, то нам хватит и их. Если говорить про те, что применяются для и ветряков, то в них верхний предел напряжения обычно равняется 15 вольтам, тогда как нижний - 12 В. При этом аккумулятор может генерировать в стандартном режиме 12 В. Источник энергии подключают к нему с использованием нормально замкнутых контактов реле. Что будет, когда напряжение аккумулятора превышает установленные 15 В? В таких случаях контроллером осуществляется замыкание контактов реле. В результате источник электроэнергии с аккумулятора переключается на нагрузочный балласт. Следует отметить, что его не особенно любят ставить для солнечных панелей из-за определённых побочных эффектов. А вот для они являются обязательными. Бытовая техника и мобильные устройства имеют свои особенности. Причем контроллер заряда аккумулятора планшета, сенсорного и кнопочного сотового телефонов являются практически идентичными.

Заглянем в литиево-ионный аккумулятор сотового телефона

Если расковырять любую батарею, то можно заметить, что к выводам ячейки припаивается маленькая Она называется схемой защиты. Дело в том, что требуют наличия постоянного контроля. Обычная схема контроллера представляет собой миниатюрную плату, на которой базируется схема, сделанная из SMD-компонентов. Она в свою очередь делится на две микросхемы - одна из них является управляющей, а другая - исполнительной. Давайте поговорим более детально о второй.

Исполнительная схема

Она базируется на Обычно их два. Сама же микросхема может иметь 6 или 8 выводов. Для раздельного контроля заряда и разряда ячейки аккумулятора используют два полевых транзистора, которые находятся в одном корпусе. Так, один из них может подключать или отключать нагрузку. Второй транзистор делает эти же действия, но уже с источником питания (в качестве которого выступает зарядное устройство). Благодаря такой схеме реализации можно без проблем влиять на работу аккумулятора. При желании ею можно воспользоваться и в другом месте. Но следует учитывать, что схема контроллера заряда аккумулятора и он сам может применяться только к устройствам и элементам, что обладают ограниченным диапазоном работы. Более детально о таких особенностях мы сейчас и поговорим.

Защита от перезаряда

Дело в том, что если напряжение превысит 4,2, то может возникнуть перегрев и даже произойти взрыв. Для этого подбираются такие элементы микросхем, которые будут прекращать заряд при достижении данного показателя. И обычно, пока напряжение не достигнет показателя в 4-4,1 В из-за использования или в процессе саморазряда, дальнейшая зарядка будет невозможной. Это важная функция, которая возложена на контроллер заряда литиевых аккумуляторов.

Защита от переразряда

Когда напряжение достигает критически малых значений, которые делают проблемным само функционирование устройства (обычно это диапазон в 2,3-2,5В), то выключается соответствующий MOSFET-транзистор, который отвечает за подачу тока мобильнику. Далее происходит переход в режим сна с минимальным потреблением. И тут имеется довольно интересный аспект работы. Так, пока напряжение ячейки аккумулятора не станет больше 2,9-3,1 В, мобильное устройство не получится включить для работы в обычно режиме. Наверное, такое вы могли замечать, что когда подключаешь телефон, он показывает, что идёт зарядка, но сам включаться и функционировать в обычном режиме не хочет.

Заключение

Как видите, контроллер заряда Li-Ion-аккумулятора играет важную роль в обеспечении длительности работоспособности мобильных устройств и позитивно сказывается на сроке их службы. Благодаря простоте производства их можно найти практически в любом телефоне или планшете. Если будет желание собственными глазами увидеть, а руками потрогать контроллер заряда Li-Ion-аккумулятора и его содержимое, то при разборе следует помнить, что работа ведётся с химическим элементомв, поэтому следует соблюдать определённую осторожность.

4SBLi-7A5021 / PCM-Li04S7-256 (A-1) представляет собой контроллер заряда и разряда для литиевых аккумуляторов с функцией балансировки.

PCM подходит для Li-Ion / Li-Pol. PCM предназначен для защиты от перезаряда и глубокого разряда 1…4 аккумуляторов.

В большинстве современных портативных устройств, таких как планшетные компьютеры, GPS навигаторы, электронные книги, портативные игровые консоли, устройства накопления солнечной энергии, производители используют бескорпусные литий-полимерные аккумуляторы. Основные преимущества Li-Pol аккумуляторов, это небольшие размеры при приемлемой ёмкости батареи, возможность изготовления под конкретное устройство, не прибегая к установленным стандартам.

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые "нежные" аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случается или пожар, или аккумулятор "умирает".

Перечислим их в порядке убывания опасности:
• Заряд до напряжения, превышающего 4,2 В на банку;
• Короткое замыкание аккумулятора;
• Разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60 ˚С;
• Разряд ниже напряжения 3 В на банку;
• Нагрев аккумулятора выше 60 ˚С;
• Разгерметизация аккумулятора;
• Хранение в разряженном состоянии.

Невыполнение первых трёх пунктов приводит к пожару, всех остальных – к полной или частичной потере ёмкости.

Поэтому каждый бескорпусный аккумулятор перед установкой, в какой либо гаджет снабжается контроллером, который осуществляет защиту аккумулятора от перезарядки, переразрядки, контролирует зарядные и разрядные токи и напряжения, что значительно продлевает срок службы аккумулятора и помогает в обеспечении безопасности.

Контроллер обеспечивает сбор и обработку информации относящейся к аккумуляторам и с помощью транзисторных ключей отключает аккумуляторы от питания. Резисторы и конденсаторы обеспечивают внешнюю синхронизацию.

При том условии, что напряжения заряда и разряда аккумуляторов соответствуют норме, на аккумуляторе нет короткого замыкания и его ёмкость не достигла максимума транзисторные ключи открыты и аккумуляторы могут свободно заряжаться и разряжаться.

При отклонении одного из указанных параметров от нормы, контроллер подаёт закрывающее напряжение на транзисторные ключи. Напряжение через большое сопротивление закрытых транзисторов не поступает на выводы аккумуляторов, из-за чего зарядка или разряд аккумуляторов прекращается до тех пор, пока все необходимые условия не будут соответствовать норме.

Для исключения разбалансированности аккумуляторов в батарее Li-Pol аккумуляторы заряжают отдельно. Для этого и используется контроллер 4SBLi-7A5021, который имеет 4 отдельных цепи, следовательно может заряжать батарею из четырёх литиевых аккумуляторов.

Схема подключения:

В данном обзоре будет бегло рассмотрена высокотоковая плата защиты Li-Ion аккумуляторов, нестандартное применение USB тестера, понижающего преобразователя с ограничением по току, доработка штатного зарядного устройства Makita.
Менять шурик желания нет, он меня устраивает. Цена нового оригинального аккума PA 12 достигает 2-2,5т.р. По этому решил заморочиться с переделкой. Но не абы как, а с умом.
Если интересно, смотрим далее.

Герои повести:
1. Шуруповёрт Makita 6271D. Который верой и правдой мне служит уже более 7 лет.
Естественно родные аккумы подохли, да и всегда у меня к ним претензия была.
О недостатках Ni-Cd АКБ знаю думаю почти все кто с ними работал. Требует бережного отношения «заряд-разряд», высокий саморазряд, вес.

2. Плата защиты 3S 30A BMS PCM li-ion.


Цена покупки: 684р.


1) Over-charge protection voltage with single cell:4.25V±0.025V
2) Over-discharge protection voltage with single cell:2.50±0.1V
3)Max continuous working current:30A
4) Over-current protection:40A
5) Suggest charge current: 1A-2A
6) Functions: Over-charge protection ,over-discharge protection,
over-current protection ,short circuit protection .High temperature detecting protection
6) Size:43*37mm
Предостережение продавца:
3.Use 12.6V li-ion charger, don"t use too high voltage charger OR high current charger to charge it.






Цены указары в рублях, почему?

Живу в России, данный ресурс находится в Российской зоне, зарабатываю в рубля, на карте в рублях, оплачиваю товар в рублях. Не вижу смысла пересчитывать в другую валюту. У продавца цены могут изменится, могут быть акции и т.п. Специально указал ссылки на магазин, переходите туда и ставьте цену хоть в тубриках, магазин сам пересчитает. DEL


Общие расходы переделки составили(АКБ+ЗУ) ~ 2"700р.

Основные параметры которые определил для себя:
1. Хорошая плата минимум на 30А с балансировкой, по габаритам должна помещаться в размеры штатного аккума.
2. Высокотоковые аккумы минимум 20А, ёмкостью минимум 2Ач.
3. Контроль заряда, вольты-амперы. Учитывая размеры и функционал, конкурентов у JUWEI J7-t просто нет. Ток до 5А, напряжение до 30В, датчик температуры на борту. Если в стоке он мало функционален, то в моём случае он очень востребован.

Самые большие проблемы возникли с платой. Все платы которые мне понравились не укладывались в размеры, максимум 35*65мм. Изначально смотрел на 4 банковые.
Принял решение купить на 3 банки и отдельно плату балансировки.

Переделка аккумулятора.
Самое простое было переделать сам аккум. Делается просто, резиновым молотком простукиваем периметр шва и он разделяется на две половинки. Никаких повреждений и танцев с ножом.


Выкидываем мёртвые банки, тут нужно немного повозится. Сборка залита клеем ко дну аккума.
На всякий случай я оставил штатную термопару, хотя смысла в ней теперь нет. И перебросил защитный предохранитель с минусового контакта аккума на зарядный вход платы.


Если разобраться, то зарядка штатного аккума осуществляется посредством отдельного контакта, помимо контакта нагрузки.
Плата в размере:



Точечная сварка отсутствует, планирую сделать в ближайшее время, пока детали в пути…
Взял 100 ваттный паяльник и быстрым движением припаял провода, термическое воздействие минимально.


Знаю, что это не правильно и так делать нельзя. Но я далёкий от науки человек и положил нефритовый стержень на данную сложность.
Далее согласно инструкции соединил все провода.


Приклеил термо предохранители к аккумам на теплопроводный клей Kafuter K-5204K


Балансировочная плата ещё не приехала, подключу позже, как описано в примере на странице товара:


Приехала, допилил:




Вот собственно и всё, «халява».
P.S. «халява» - в смысле сложности переделки, а не цены.


Как результат, существенное снижение в весе. Оригинальный вес 668 грамм, на Li-Ion ~250 грамм. Ёмкость 2,5Ач против 1,3Ач у оригинала. В общем все показатели улучшились в два раза.
Цена вопроса ~1840р.(только АКБ) ниже оригинала оригинала.

Аккумулятор PA12 после многих лет жизни

Отсечку по нижнему напряжению решил проверить с помощью высокоинтеллектуальной разрядки «Светоч» на 55 ватт.

При напряжении 7,6в происходит отключение подачи тока. Всё норм.

Модернизация зарядного устройства.
Вот тут небольшой танец с бубном. Задача полностью сохранить родной функционал. И добавить возможность заряжать переделанные аккумы.
Проблема номер один, место! Его катастрофически не хватает. Компоновка получилась очень плотной. И вызвала проблему номер два, нагрев. Но обо всём по порядку.

Взял два щупа и начал водить по плате в поисках подходящих напряжений. Найдено оно было на выходе трансформатора в 55в~ Далее стоял диод, на выходе которого было уже 27в, то что нужно. Один контакт пустил через кнопку включения. Установил дополнительно диодный мост, через теплопроводный клей посадил на штатный радиатор. Добавил конденсатор 50v 1000uF. И после этого уже подал на понижающий преобразователь. Штатная зарядка идёт на основе минуса, у меня получается на основе плюса. Поставил 3 реле, которые будут коммутировать разные способы заряда. Приклеил рядом со штатными индикаторами белый светодиод, как индикация работы для Li-ion. В режиме заряда Li-ion отбрасывается 3 провода, два подключаются на выход преобразователя.

Между держателем аккумулятора и платами зарядки поставил в разрыв USB тестер.
Отпаял разъёмы для уменьшения размеров, разделил на две половинки. Экран и плата по 90", связано особенностями внутреннего размещения.
Взял ножик и начал вырезать пластик в корпусе.

Перед установкой проверил параметры тестера. Выставил 30 и подключил 55 ваттную лампочку(12в). Полёт нормальный, 30в держит.


И тут случайно задел выходные контакты на КЗ. Как известно, все радиодетали работают на белом дыме. Выходной мосфет AO3415 испустил белый дым и ушёл в другой мир.
Пошёл к местным шаманам, выдали близкий по ТТХ амулет AO3401 потребовав за его душу 43р, взял 2 шт;) Вернувшись пододвинул по ближе ведро и заменил амулетик, всё отлично заработало.
Выставил время работы 2 часа. Пять раз подряд нажимаем кнопку и выставляем нужное значение. Ещё не проверял, но по идее должен начать пищать.

Следующий удар в бубен связан с настройкой самого преобразователя. В холостом ходу получаем ток потребления 0,21А. это 3 реле. Изначально подключил тестер не правильно, сразу после понижающего преобразователя напряжения(далее ППН). А зачем нам считать ещё и энергию затраченную на работу реле, переделал.


Согласно даташиту на аккумы стандартный ток заряда 1,5А вот такой и был выставлен на ППН в режиме СС.
С напряжением пришлось по колдовать. Изначально выставил 14,4в на случай если перепутаю аккумы, чтоб они зарядились в любом случае. Но проведённый тест показал странную картину.
Ток потребления стабильно на максимуме 1,5А Как только на аккумах появляется напряжение в 12,75в(4,25 на 1). зарядка сразу прекращается. В таком режиме переданная ёмкость равна 2200мАч. что-то маловато.
Более правильной зарядки и плавного снижения потребления тока к концу заряда удалось добиться при напряжении в 13,43в на входе в плату защиты. Выключение происходило при токе 0,12А и напряжении 12,76в. на аккумуляторах. Для высокотоковых данный параметр 100-150mA.

Видео процесса заряда 1.5A


Разбито на две части, позвонили на телефон.

Замеры температуры.
Нагрев с открытым корпусом составлял до 70" на транзисторе, дросселе и диодном мосту.
На ППН был поставлен небольшой радиатор, диодный мост приклеил к штатному.
Места внутри корпуса не осталось совершенно. При закрытом корпусе температура будет существенно выше. Собрал, начал тестировать. Через 10 минут прозвучал щелчок и ещё одна душа покинула ЗУ. Открыв корпус увидел трещину в XL4005, о ведёрко рядом. Хорошо, что я почти всё заказываю по две штуки.

Решил установить внешний вентилятор охлаждения.
В ящике Пандоры обнаружил старую видеокарту с подходящим вентилятором, нужно ещё поставить защитную решётку, под рукой не оказалось.
Температура существенно упала, примерно до 32" по всем элементам.
На этом фоне решил поднять ток, по даташиту допускается до 4А, установил 2А.

Видео процесса заряда 2A


Видно как срабатывает защита. Причин может быть несколько, превышение тока в 2А, напряжение на одном из элементов становится больше 4,25в, перегрев.
Не сразу заметил описание товара: 5) Suggest charge current: 1A-2A
Набор 80% емкости, 2.000mAh происходит за час.

Плотность компоновки, размещал с миллиметровой точностью, штатные детали не задеты.
Сравним, до и после переделки.








Выходные отверстия с противоположной стороны и три если случайно поставлю на мягкую поверхность и перекроются основные.

Общая схема подключения:

Тест отсечки по току.
На второй скорости срабатывает быстро.
На первой удержать мне не получилось, проворачивает.

Немного подумав выставил финальные характеристики на ППН из расчёта характеристик на разъёме ЗУ: CC=1,9А CV=13.38v
Записывать видео не стал, слишком много времени это отнимает. И главное, телефон лежит и трогать его нельзя пока запись идёт. Общая картина и так понятна. Отключение должно происходить на 80-110мА. Снизив или убрав сработки по защите. Время зарядки примерно 1:45:00

Подведём итоги.


Всё работает как и задумано.
Явных минусов не вижу, только шумит вентилятор.
-Время полной зарядки около двух часов.

Плюсы:
-Существенное снижение веса.
-Увеличение ёмкости.
-Набор ёмкости в 1"250mAh(50%) происходит за 35 минут, что сопоставимо по времени и ёмкости со штатным аккумом.
-Контроль заряда с подсчётом ёмкости.
-Два режима зарядки аккумуляторов, родные Ni-Cd & Ni-Mh и новые Li-Ion.
-Опыт.

Если где обнаружили ошибки, пишите в личку или в коментах.
Всевозможные рекомендации по улучшению так же приветствуются.

Планирую купить +112 Добавить в избранное Обзор понравился +71 +152

И снова устройство для самоделкиных.
Модуль позволяет заряжать Li-Ion аккумуляторы (как защищённые так и незащищённые) от порта USB посредством кабеля miniUSB.

Печатная плата - двусторонний стеклотекстолит с металлизацией, монтаж аккуратный.




Собрана зарядка на базе специализированного контроллера заряда TP4056.
Реальная схема.


Со стороны аккумулятора, устройство ничего не потребляет и его можно оставлять постоянно подключенным к аккумулятору. Защита от КЗ на выходе - есть (с ограничением тока 110мА). Защита от переполюсовки аккумулятора отсутствует.
Питание miniUSB продублировано пятаками на плате.




Работает устройство так:
При подключении питания без аккумулятора, загорается красный светодиод, а синий периодически помаргивает.
При подключении разряженного аккумулятора, красный светодиод гаснет и загорается синий - начинается процесс заряда. Пока напряжение на аккумуляторе меньше 2,9V, ток заряда ограничен величиной 90-100мА. С повышением напряжения выше 2.9V, ток заряда резко возрастает до 800мА с дальнейшим плавным повышением до номинала 1000мА.
При достижении напряжения 4,1V, ток заряда начинает плавно снижаться, в дальнейшем происходит стабилизация напряжения на уровне 4,2V и после уменьшения зарядного тока до 105мА светодиоды начинают периодически переключаться, показывая окончание заряда, при этом заряд всё равно продолжается с переключением на синий светодиод. Переключение идёт в соответствии с гистерезисом контроля напряжения аккумулятора.
Номинальный ток заряда задаётся резистором 1,2кОм. При необходимости, ток можно уменьшить увеличивая номинал резистора согласно спецификации контроллера.
R (кОм) - I (mA)
10 - 130
5 - 250
4 - 300
3 - 400
2 - 580
1.66 - 690
1.5 - 780
1.33 - 900
1.2 - 1000

Конечное напряжение заряда жёстко задано на уровне 4,2V - т.е. не всякий аккумулятор будет заряжен на 100%
Спецификация контроллера.

Вывод: устройство простое и полезное для выполнения конкретной задачи.

Планирую купить +167 Добавить в избранное Обзор понравился +96 +202

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT .

Решение интересно тем, что ключевые MOSFET"ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.


Вам также будет интересно:

Запрещающие знаки Знак
1. При эксплуатации эвакуационных путей и выходов руководитель организации обеспечивает...
Когда отменят эра глонасс на ввозимые автомобили
Как регламентируется ввоз автомобиля без Эра-Глонасс, и какие требования выставляет таможня...
Водородный двигатель: принцип работы и устройство
03.02.2016 Ресурсы нашей планеты не бесконечны, в том числе и запасы «черного золота»...
Как заводится зимой в сильные морозы
Зимняя пора с ее низкими температурами доставляет нам хлопоты, особенно при запуске...
Как заправить зажигалку бензином
В основу механизма зажигалки лег замок пистолета. Безымянный изобретатель в девятнадцатом...